The method of vocal tract normalization has been known as a successful method for improving the accuracy of speech recognition. A frequency warping procedure based low complexity and maximum likelihood has been generally applied for vocal tract normalization. In this paper, we propose a new power spectrum warping procedure that can be improve on vocal tract normalization performance than a frequency warping procedure. A mechanism for implementing this method can be simply achieved by modifying the power spectrum of filter bank in Mel-frequency cepstrum feature(MFCC) analysis. Experimental study compared our Proposal method with the well-known frequency warping method. The results have shown that the power spectrum warping is better 50% about the recognition performance than the frequency warping.
We propose a new bandpass filter (BPF)-based online channel normalization method to dynamically suppress channel distortion when the speech and channel noise components are unknown. In this method, an adaptive modulation frequency filter is used to perform channel normalization, whereas conventional modulation filtering methods apply the same filter form to each utterance. In this paper, we only normalize the two mel frequency cepstral coefficients (C0 and C1) with large dynamic ranges; the computational complexity is thus decreased, and channel normalization accuracy is improved. Additionally, to update the filter weights dynamically, we normalize the learning rates using the dimensional power of each frame. Our speech recognition experiments using the proposed BPF-based blind channel normalization method show that this approach effectively removes channel distortion and results in only a minor decline in accuracy when online channel normalization processing is used instead of batch processing
Purpose: To propose improved method for normalization, compare to the de facto international standard which is IESNA TM-21 or conventional normalization methods. Methods: Firstly, we analysed conventional methods and specified the problem of normalization method which is based on first measured data. Secondly, we proposed our approach which is based on the design specification. Lastly, we studied a real degradation data which is conducted for 15,000 hours. Conclusion: Proposed normalization method is better approach because it can reflect real data and design specification, and reduce distortion when analysing degradation data. Also, It is appliable to other long-life reliability items.
Radiometric normalization with multi-temporal satellite images is essential for time series analysis and change detection. Generally, relative radiometric normalization, which is an image-based method, is performed, and histogram matching is a representative method for normalizing the non-linear properties. However, since it utilizes global statistical information only, local information is not considered at all. Thus, this paper proposes a histogram matching method considering local information. The proposed method divides histograms based on density, mean, and standard deviation of image intensities, and performs histogram matching locally on the sub-histogram. The matched histogram is then further partitioned and this process is performed again, iteratively, controlled with the wasserstein distance. Finally, the proposed method is compared to global histogram matching. The experimental results show that the proposed method is visually and quantitatively superior to the conventional method, which indicates the applicability of the proposed method to the radiometric normalization of multi-temporal images with non-linear properties.
In this paper, we propose the estimation method for the image affine information for computer vision. The first estimation method is given based on the XYS image normalization and the second estimation method is based on the image normalization by Pei and Lin. The XYS normalization method turns out to have better performance than the method by Pei and Lin. In addition, we show that rotation and aspect ratio information can be obtained using the central moments of both the original image and the sensed image. Finally, we propose the modified version of the normalization method so that we may control the size of the image.
A cDNA microarray experiment is one of the most useful high-throughput experiments in medical informatics for monitoring gene expression levels. Statistical analysis with a cDNA microarray medical data requires a normalization procedure to reduce the systematic errors that are impossible to control by the experimental conditions. Despite the variety of normalization methods, this. paper suggests a more general and synthetic normalization algorithm with a control gene set based on previous studies of normalization. Iterative normalization method was used to select and include a new control gene set among the whole genes iteratively at every step of the normalization calculation initiated with the housekeeping genes. The objective of this iterative normalization was to maintain the pattern of the original data and to keep the gene expression levels stable. Spatial plots, M&A (ratio and average values of the intensity) plots and box plots showed a convergence to zero of the mean across all genes graphically after applying our iterative normalization. The practicability of the algorithm was demonstrated by applying our method to the data for the human photo aging study.
다중시기의 위성영상에 대해 일관성 있는 변화탐지 결과를 획득하기 위해서는 전처리 과정이 필수적으로 이루어져야 한다. 특히, 분광값과 관련된 전처리 과정은 방사보정으로 수행될 수 있으며, 일반적으로 상대 방사보정이 활용되고 있다. 하지만, 대부분의 상대 방사보정은 두 영상간의 관계를 선형으로 가정하며, 생태학적 차이와 같은 비선형적인 분광특성은 고려되지 않는다. 따라서, 본 연구에서는 방사 및 생태학적 특성에 대한 복합적인 보정을 수행할 수 있는 비선형적인 관계를 가정한 상대 방사보정을 제안하였다. 제안된 방법은 입력영상 및 참조영상을 선정하고, no-change method를 통해 radiometric control set samples를 추출하였다. 또한, 충분한 정보를 고려하기 위하여 화소값뿐만 아니라 분광지수들이 추출되었고, 비선형적인 관계의 모델링은 다층 퍼셉트론을 통해 수행되었다. 최종적으로 기존의 상대 방사보정기법과 비교 분석을 수행하였고, 시각적 및 정략적으로 평가한 결과 제안된 방법이 기존의 상대 방사보정보다 우수한 것을 확인하였다.
The Hotelling transform is based on statistical properties of an image. The principal uses of this transform are in data compression. The basic concept of the Hotelling transform is that the choice of basis vectors pointing the direction of maximum variance of the data. This property can be used for rotation normalization. Many objects of interest in pattern recognition applications can be easily standardized by performing a rotation normalization that aligns the coordinate axes with the axes of maximum variance of the pixels in the object. However, this transform can not be used to rotation normalization of color images directly. In this paper, we propose a new method for rotation normalization of color images based on the Hotelling transform. The Hotelling transform is performed to calculate basis vectors of each channel. Then the summation of vectors of all channels are processed. Rotation normalization is performed using the result of summation of vectors. Experimental results showed the proposed method can be used for rotation normalization of color images effectively.
특징 정규화는 인식기를 적용하기 이전의 전처리 단계로 특징 차원에 따라 서로 다른 스케일에 의해 발생하는 오류를 줄이기 위해 널리 사용된다. 하지만 기존 정규화 방법은 클래스 라벨을 고려하지 않으므로 정규화 결과가 인식률에서 최적임을 보장하지 못하는 문제점이 있다. 이를 개선하기 위해 클래스 라벨을 사용하여 정규화를 시행하는 교사 정규화 방법이 제안되었고 기존 정규화 방법에 비해 나은 성능을 보임이 입증되었다. 이 논문에서는 교사 랭크 정규화 방법에 학습 샘플 선택 방법을 적용함으로써 교사 랭크 정규화 방법을 더욱 개선할 수 있는 방법을 제안한다. 학습 샘플 선택은 잡음이 많은 샘플을 학습에서 제외함으로써 잡음에 보다 강한 분류기를 학습시키는 전처리 단계로 많이 사용되며 랭크 정규화에서도 역시 사용될 수 있다. 학습 샘플 선택은 이웃한 샘플이 속하는 클래스와 이웃한 샘플까지의 거리를 바탕으로 하는 두 가지 척도를 제안하였고, 두 가지 척도 모두에서 기존 정규화 방법에 비해 인식률이 향상되었음을 실험 결과를 통해 확인할 수 있었다.
정규화 변환은 시계열 시퀀스를 구성하는 엔트리들의 전체적인 패턴을 분석하는데 매우 유용하다. 본 논문에서는 단일 색인을 사용한 정규화 변환 지원 서브시퀀스 매칭 방법을 제안한다. 기존의 정규화 변환 지원 서브시퀀스 매칭 방법은 다양한 길이의 질의 시퀀스를 지원하기 위하여 여러 개의 색인을 생성해야 하고, 이에 따라 색인 저장 공간의 오버헤드와 색인 관리의 오버헤드가 발생한다. 본 논문에서는 하나의 색인을 사용하면서도 다양한 길이의 질의 시퀀스에 대한 정규화 변환을 지원하는 효율적인 서브시퀀스 매칭 방법을 제안한다. 이를 위하여, 우선 정규화 변환을 일반화한 포함-정규화 변환(inclusion-normalization transform) 개념을 제시한다. 포함 정규화 변환이란 색인에 저장할 윈도우에 대해서 해당 윈도우를 포함하는 서브시퀀스의 평균과 표준편차로 정규화하는 것으로서, 기본적인 정규화 변환을 윈도우 및 서브시퀀스 개념을 사용하여 확장한 것이다. 다음으로, 포함-정규화 변환을 기존 서브시퀀스 매칭 연구에 적용하기 위한 이론적 근거를 정리로서 제시하고 증명한다. 그리고, 이 방안을 구현하기 위한 색인 구성 알고리즘 및 서브시퀀스 매칭 알고리즘을 각각 제시한다. 실제 주식 데이터에 대한 실험 결과, 제안한 방법은 기존 방법에 비해 최대 $2.5{\sim}2.8$배까지 성능을 향상 시킨 것으로 나타났다. 본 논문에서 제안한 정규화 변환 지원 서브시퀀스 매칭은 정규화 변환 이외의 다른 변환을 지원하는 서브시퀀스 매칭으로 일반화 될 수 있다. 따라서, 제안한 방법은 정규화 변환을 포함하는 많은 다른 종류의 변환을 지원하는 서브시퀀스 매칭에 폭넓게 적용될 수 있는 좋은 연구결과라 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.