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Abstract

A cDNA microarray experiment is one of the most useful
high-throughput experiments in medical informatics for
monitoring gene expression levels. Statistical analysis
with a ¢DNA microarray medical data requires a
normalization procedure to reduce the systematic errors
that are impossible to control by the experimental
conditions. Despite the variety of normalization methods,
this paper suggests a more general and synthetic
normalization algorithm with a control gene set based on
previous studies of normalization. Iterative normalization
method was used to select and include a new control
gene set among the whole genes iteratively at every step
of the normalization calculation initiated with the
housekeeping genes. The objective of this iterative
normalization was to maintain the pattern of the original
data and to keep the gene expression levels stable.
Spatial plots, M&A (ratio and average values of the
intensity) plots and box plots showed a convergence to
zero of the mean across all genes graphically after
applying our iterative normalization. The practicability of
the algorithm was demonstrated by applying our method
to the data for the human photo aging study.
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Introduction
As a high-throughput technology, a cDNA microarray
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experiment that can simultaneously monitor the
expression levels of thousands of genes has been widely
used after the success of determining the human DNA
sequences. However, there are limitations in that only
few samples can be obtained in vivo and there is no
golden rule for verifying the results and effects of the
experiments. Therefore, reliable experiments and
considerate analyses to reduce the errors in the results
are needed. Regarding experiments, laboratory
technicians can prevent intra and inter-laboratory errors
by observing a precise protocol. However, other errors
that cannot be controlled through physical treatments,
such as errors from the mechanics or from experimental
materials, demands the statistical adjustments during
the analysis. In order to solve these problems,
normalization is an essential part at the preliminary stages of
an analysis. In Medical informatics, normalization implies
the removal of errors and making a randomized
distribution of the M (intensity ratio of expression levels
between control and target genes) values. The final goal
of normalization is to balance the different intensities of
the two dyes in a slide caused from labeling or scanning
sets. This should dispose of the errors and make a clear
randomized data set to analyze reliably. Specifically,
after a good normalization, the intensity ratio value
(M)might show a close mean of M near zero at each
average intensity level (A). If there is a systematic error,
the M value across the A value may have a curvature on
the M&A plot. This is because the systematic errors
make a certain part of the data have low or high values
particularly. Normalization can make all M values even
and randomly along by A values. Therefore, an M&A plot
should have an almost straight band of M values.
During the procedure of normalization, there are
several ways for correcting errors, for example, regression
fitting analysis, and ANOVA as a calculation method.
Additionally choosing the control gene group for
normalization is also a controversial issue. Slide-wise,
pin-wise and average pin-wise normalization procedures
all focus on each spot on the scatter plot over the slides
(Schuchhardt et al., 2000) .In addition, the fotal intensity
normalization method assumes that the total integrated
intensity computed for all the samples is the same and
simply subtracts the mean. Likewise, Yang et al.(2002)
suggested a global normalization method with the whole
gene set. Normalization used regression techniques



expect an adjustment of the slope to a straight line in a
scatter plot of a Cy3 and Cy5 intensity (Hedenfalk et al.,
2001). LOWESS (Locally Weighted Scatterpiot
Smoothing) is a popular method for making a local
adjustment (Cleveland and Devlin, 1988). Chen et al.
{1997) considered control gene sets at the ratio statistics
of normalization. Yang et al. (2002) developed
normalization methods under the consideration in a
structure of arrays and reported a print-tip group
normalization method. Zien et al. (2001) disproved the
global normalization and used a housekeeping gene
approach. They instead proposed a pair-wise scaling
method for centralizing all the genes over the slides. In
contrast, Wang et al. (2002) reported the necessity of
control gene set and presented an iterative method using
control genes. With this theoretical background, the aim
of this paper was to compensate for some of the
drawbacks of previous studies and propose a novel
normalization algorithm in a universal and synthetic way.

Materials and Methods
System

Biologically, housekeeping genes have still been thought
as reliable biomarkers i.e. they are available as a consistent
control gene set in a ¢DNA chip. Therefore, the
normalization method used in this paper also used
housekeeping genes with all the genes as a control gene
set in the calculation procedure. Furthermore, updating a
new control gene set among all the genes on the same slide
iteratively at each step is an essential point of this study.
Some normalization methods are able to force the
data to transform their values at once (Wang et al.,
2002). In that point of view, the LOWESS method with
newly selected control genes at each iterative step can
be a more moderate, robust and safe procedure. The
iterative normalization method emphasizes the removal
of systematic errors by maintaining the original pattern of
the raw data. The systems of iterative normalization
method follow two points: First, in the normalization
procedure, the housekeeping genes as well as all the
genes on a slide are used as a control gene set. Second,
by the iterative calculations based on the LOWESS
method, normalization is naturally accomplished.

Materials and methods

On a cDNA chip, there are two identical slides for an
internal comparison. Each slide consists of twelve arrays
accounting for the print-tips (Yang et al., 2002) and a total
4608 human cDNA probes related to the DNA repair, cell
cycle, metabolism and unknown ESTs, etc.. This means
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there are 12 x 1 arrays on one slide and 12 x 32 spots
(sub-grids) on a single array. At each array, the last row
consists of eight repeated sets of control genes; actin,
lambda 564, and tublin. These genes are the housekeeping
genes including negative and positive controls. Data
analyzed in this paper were designed for a case study of
the photo-aging effect of the skin. The reference sample
was extracted from an inner fore arm skin biopsy and the
target mRNAs from the outer fore arm skin biopsy were
exposed to more sunlight. By comparing the reference
and target samples, the effect of sunlight can be
determined. Once the biological experiment was complete,
a scanner reads the fluorescent intensity on a chip. After
reading, it records the mean, median and mode of the
signal and background pixel intensities automatically.
Among these values, the median is a good estimator of
representing the intensities considered to have a pixel
property. Therefore, the median value of the signal and
background intensities is managed as the raw data in the
calculation. The SMA packages in R software (htto://cran.r-
project.org) based on S-plus were used in the analysis.

Algorithm of iterative normalization

This section shows the new lterative normalization
algorithm with the following steps.

1. Set the initial control gene set with the immobilized
known housekeeping genes.

2. Apply the LOWESS to the control gene set and
obtain the M?(o estimate values.

(i = iterative number;1,2,3,---, j(c) = gene number
in control gene set; A1 2,.K)

3. Approximate the 3 (j=gene number;1,2,3,-:-,N)
value across the A values of all genes along the
expanded LOWESS estimates ( M}))- .

4. Make anew M, value by the subtracting M value
from the previous M:! value.

5. Extract the new control gene set within £0.05
boundaries of the M; value approximately 8%
( =-L) of the whole genes.

6. Repéat the loop through process 2 to 5 iteratively
until S; converges to 0.

N ) .
Si= ]Z:IIAM?)M;H

(i = iterative number; 1,2,3,--- j= gene number;1,2,
3,-.N)

The main idea of iterative normalization is to combine
the LOWESS method and the iterative calculation by
considering the control gene set. This means that the
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iterative normalization method focuses on the best use of
all the genes on the same slide as a control set including
the housekeeping genes initially in the process 1 and
applying the iterative LOWESS methods to processes 2
through 5. Accordingly, it can prevent data distortion that
can be caused by putting data of other sources
compulsorily in the adjustment. Actually, the key point is
to renew the control gene set from a homogenous
environment, such as the same experimental time and
same laboratory worker, from being on the same slide. At
process 5, the reason for selecting stable genes staying
near zero area at approximately 8% ( = %2) of all genes
is to reflect the size of the initial control gene set size. As
mentioned before, 384 housekeeping genes among
4608 genes were immobilized on a cDNA chip. In order
to extract the stable control genes, approximately 8% of
all genes, the genes were selected within the +0.05
boundaries of 0 in the A values, which is a size that
satisfies approximately 8% of the whole genes
empirically. If the difference in 1£:and M?! converges to
0, it means that the positions of the genes are stable and
almost fixed. Therefore, normalization keeps processing
until the index S, has the same value over the iterations.

Results

Many statisticians have proposed new methods using
several assumptions. Indeed, there is no robust model to
evaluate the various normalization methods. Some people
prefer numerical and logical formulations. However,
graphical evaluating method has attracted a great deal of
attention. SMA packages of R provide the function to
display some of the intensity of the spots on the array,
such as a scanning image by the shades of gray or
colors. These spots represent the M values within an
absolute critical value defined with quality information
such as the spot size or shape. Using this spatial plot,
any spatial effect in the data can be examined visually.
Usually, the scatter plot of M and A (M&A plot) with the
LOWESS line of data is preferred because it enables up
the pattern of whole genes to be checked at a glance.
Along the average of the intensities, A, on the X-axis, the
intensity ratio, M, is expected to have the same mean
value, zero. In order to illustrate this, M cannot be
affected by the A values even though the target and
reference sample intensities (R and G) have low values
inducing low A values. This means that M is always
meant to spread concentrically and symmetrically across
all A values. Besides, a box plot separated by print-tips
can be used to explore the print-tip effect. It shows
comparable box plots of each print-tip in a row. After
seeing this plot, the mean and variance of the M values

confirms the higher specificity than the M &A plot. The
plots as above are ready to evaluate the normalization
method. Using a comparison of each plot before and
after normalization, the effect of normalization will be
verified approximately. In this paper, all three plots were
used as results for evaluating the iterative normalization
method from one slide of a data set in the cDNA
microarray experiment.

Spatial plot

Iterative normalization has performed for 25 times
iterations and was stopped when S,.=0.75~0 was
sufficiently satisfied. (Table 1) Through each iterative
step, the S values were reducing because the changes in
the M values decreased gradually. Coming to the end of
iterations, there are fewer changes in the M values and
those values become almost fixed. Figure 1 shows that
the S value from every iterative stage makes a declining
line, which ensures that the S vaiue converges to zero.

Table 1. S values at each iterative step

Iteration Number=i Si lteration Number=i Si
1 9.90 14 1.63
2 5.85 15 1.82
3 3.76 16 1.66
4 4.50 17 1.19
5 4.49 18 1.29
6 3.49 19 2.04
7 2.91 20 1.60
8 2.55 21 1.21
9 1.98 22 0.92
10 1.30 23 0.81
11 2.10 24 0.76
12 1.87 25 0.74
13 1.98
s
5
; 4 5 8 10 12
number of iterative normalization
Fig. 1. Plot of S values at every iterative stage
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after normalization

Fig. 2. Spatial plots before(left panel) and after(right panel) iterative normalization
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Fig. 3. Histograms along the columns before and after normalization

A spatial plot (Fig.2) prior to normalization illustrates
the spatial problem caused by the mechanical procedure
of the experiment. Red spots can be seen crowded
around the left part on the slide. However, after iterative
normalization, the red spots are located evenly all over
the slide. in addition, the histograms (Fig.3) of the sum of
the M values by column (32 sub-columns) on the spatial
plot show the bias of the absolute M values within 10%.
The left panel of Fig. 3, which shows a histogram prior to
the iterative normalization, shows that the sum of the M

values declines steeply under the zero line along the first
column through the last one as seen in the pattern on the
left plot in Figure 2. However, after normalizing, the sum
of the M values by columns is up regulated near zero and
appeared to have an equally wide band balanced near
the zero reference line except for the left five columns.

A summary of the M values shows the improvement in
the normalized distribution indicating a near zero value in
both the mean (=0.04) and median (=0.1391) after the
iterative normalization. (Table 2)
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Table 2. The summary of the M values on the slide

Normalization Before After
Median -1.334 0.1391
Mean -1.374 0.0405
M & A plot

On the M&A plot before normalization (Fig. 4, first row),
there is an abnormal curvature near the region 8 to 14 of
the A values. Compared to the other average intensity,
that region has slightly down regulated M values.
However, the iterative normalization removes the errors,
and the data is finally transformed into an intensity ratio
that is distributed similarly over all the A values. In order
to compare the results with the other normalization
method, the third and fourth rows of Figure 4 show the M&A
plots from the normalization with the housekeeping genes
only (upper) and the global normalization (lower) (Yang et
al., 2002). The M&A plot of the global normalization still
has the curvature that suggests that there should be more
considerations in normalization not just subtracting the
total mean value from the M values. In addition, the plot of
the normalization with the housekeeping genes appears
like the plot after the iterative normalization except that the
former has a slightly wider variance than the latter. Using
these results, we can be sure that the iterative
normalization method is the best fit to this data set.

before normalization

Fig. 4. M & A plots for several normalization methods

Box plot

The box plots separated by the 12 print-tip arrays may
illustrate the print-tip effect. Prior to normalization, the
median values of all the box plots are below the zero line
of the M values. (Fig. 5) Since there is no unique high or
low box plot, it can be assumed that the distinctive
print-tip effect does not exist in this data. Meanwhile, it
remains the problem that all values are down from the
reference line (M=0). This situation may make it difficult
to compare the M values with the other slides. After
iterative normalization, median values of all the box plots
are arranged approximately in a reference line. The data
are adjusted by lifting up their M values in order for the
original pattern to be totally maintained.

before normalization after normalization
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Fig. 5. The box plot along 12 print-tips
Discussion

Three kinds of plots - spatial plots, M&A plots and box
plots showed satisfactory results after applying the
iterative normalization method. A comparison spatial
plots (Fig. 2) before and after normalization confirms the
spatial effect arising from a certain mechanical problem.
The spatial plot shows that the largest absolute M values
above 10% are biased to the left part on a slide. At a
guess, when the arrayer fixes the probes in that part of
the slide, the intensity of the automated robot might have
been different from the other part. In addition, the
histograms (Fig.3) confirm the particular problem on the
slideby the numerical values. This result showed the
existence of a systematic error in prediction. After the
iterative normalization method, the systematic error is
relieved and the spatial plot displays balanced spot
locations, and sum of M values. are fluctuated and



remained almost zero relative to the ones prior to
normalization. Therefore, iterative normalization removes
the spatial effect from the systematic error.

The M&A plots with the LOWESS line (Fig.4) can
grasp the whole pattern of the genes. After normalization,
the curvature of the LOWESS line straightens to that of
the reference line. For the raw data, the part of the
curvature is located at higher A values. It is the opposite
case of what is normally encountered. A common view of
the intensities was that the curvature tends to occur at
lower A values (Yang et al., 2002). This situation informs
us that cDNA microarray analysis requires careful scrutiny
before applying the normalization method. In other words,
the study of a more general normalization method without
specific assumptions is more important. The iterative
normalization method makes fewer assumptions than
previous studies and worked its function successfully.
On the M&A plot after normalization with the
housekeeping genes only, the M values are somewhat
similar to those of the Lowess line of M&A plot after
iterative normalization but the density of the M values
over the reference line is lower than that one. After a
global normalization simply using the whole genes to
normalize, the M&A plot has a bent Lowess line. This
means that the unconditional control genes cannot
perform any function to adjust for the errors. In
conclusion, the iterative normalization algorithm has a
more competitive result than the previous normalization
method. Boxplots are good for illustrating the
characteristics of the data such as the median, variance
and outliers. Box plots, which were obtained here, reveal
detailed descriptions about the print-tip effect. The whole
raw data were down regulated from the reference line
and this problem was adjusted after the iterative
normalization. The box plot before normalization suggests
that there were no abnormalities in the print-tips
physically. After normalization, most of the median
values approached those of the reference line (M=0).
Therefore, the comparison of M values between
print-tips is ready. Finally, the list of the control genes set
of this study is available for assessing the biological
implication. As the initial control gene set, 384 genes are
repeatedly immobilized housekeeping genes. The first
new control gene set has 406 genes including some
housekeeping genes. After an Iterative normalization 25
times, 36 genes were omitted from the first control gene
set and added to the other 28 genes. The results in this
paper demonstrate that the iterative normalization
method is suitable for normalizing and adjusting the raw
data with systematic errors. The systematic errors were
reduced and the normalization of the raw data can be
accomplished through the iterative steps.
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Conclusion

The lterative Normalization Method uses both the
homogeneous control genes as well as the housekeeping
genes to normalize and not damage the whole pattern of
raw data. To be sure that this method is suitable, more
applications to other cDNA microarray data from other
laboratories are recommended. Despite the same basis
of the Microarray experimental protocol, there would be
slight differences according to the particular laboratory
such as arrayers. Nowadays, there are many web sites
of groups involved in the DNA microarray experiments
on the Internet that share data. Therefore, more
applications using the data from these laboratories will
be a good exercise to validate and evaluate the new
normalization method. The use of different arrayers and
different housekeeping genes is a cautious part to apply
this method. Originally, the purpose of the cDNA
microarray experiment was t{o identify the most
significant genes of the target samples compared to the
reference samples. Once the raw data is manipulated by
normalization, reliable conclusions can be drawn to
predict the significant genes that have a distinctive gene
expression level by foliowing the analysis e.g. SOM or
clustering. Besides, if the cDNA microarray experiment
has many samples, the normalization procedure will for
the essential part for comparing the precision and validity
of the samples. That is the absolute reason why its
analysis requires a normalization of the raw data. There
are some limitations in the iterative normalization
method; it needs to iterate the loop in easy way and to
find optimal conditions to stop iterations in programming.
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