• Title/Summary/Keyword: normal operator

Search Result 282, Processing Time 0.022 seconds

An Induced Hesitant Linguistic Aggregation Operator and Its Application for Creating Fuzzy Ontology

  • Kong, Mingming;Ren, Fangling;Park, Doo-Soon;Hao, Fei;Pei, Zheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4952-4975
    • /
    • 2018
  • An induced hesitant linguistic aggregation operator is investigated in the paper, in which, hesitant fuzzy linguistic evaluation values are associated with probabilistic information. To deal with these hesitant fuzzy linguistic information, an induced hesitant fuzzy linguistic probabilistic ordered weighted averaging (IHFLPOWA) operator is proposed, monotonicity, boundary and idempotency of IHFLPOWA are proved. Then andness, orness and the entropy of dispersion of IHFLPOWA are analyzed, which are used to characterize the weighting vector of the operator, these properties show that IHFLPOWA is extensions of the induced linguistic ordered weighted averaging operator and linguistic probabilistic aggregation operator. In this paper, IHFLPOWA is utilized to gather linguistic information and create fuzzy ontologies, and a movie fuzzy ontology as an illustrative case study is used to show the elaboration of the proposed method and comparison with the existing linguistic aggregation operators, it seems that the IHFLPOWA operator is an useful and alternative operator for dealing with hesitant fuzzy linguistic information with probabilistic information.

AN EXTENSION OF THE FUGLEDGE-PUTNAM THEOREM TO $\omega$-HYPONORMAL OPERATORS

  • Cha, Hyung Koo
    • The Pure and Applied Mathematics
    • /
    • v.10 no.4
    • /
    • pp.273-277
    • /
    • 2003
  • The Fuglede-Putnam Theorem is that if A and B are normal operators and X is an operator such that AX = XB, then $A^{\ast}= X. In this paper, we show that if A is $\omega$-hyponormal and $B^{\ast}$ is invertible $\omega$-hyponormal such that AX = XB for a Hilbert-Schmidt operator X, then $A^{\ast}X = XB^{\ast}$.

  • PDF

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 OF A COMPLEX PROJECTIVE SPACE IN TERMS OF THE JACOBI OPERATOR

  • HER, JONG-IM;KI, U-HANG;LEE, SEONG-BAEK
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.93-119
    • /
    • 2005
  • In this paper, we characterize some semi-invariant sub-manifolds of codimension 3 with almost contact metric structure ($\phi$, $\xi$, g) in a complex projective space $CP^{n+1}$ in terms of the structure tensor $\phi$, the Ricci tensor S and the Jacobi operator $R_\xi$ with respect to the structure vector $\xi$.

AN EXTENSION OF THE FUGLEDE-PUTNAM THEOREM TO p-QUASITHYPONORMAL OPERATORS

  • Lee, Mi-Young;Lee, Sang-Hun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.319-324
    • /
    • 1998
  • The equation AX = BX implies $A^*X\;=\;B^X$ when A and B are normal (Fuglede-Putnam theorem). In this paper, the hypotheses on A and B can be relaxed by usin a Hilbert-Schmidt operator X: Let A be p-quasihyponormal and let $B^*$ be invertible p-quasihyponormal such that AX = XB for a Hilbert-Schmidt operator X and $|||A^*|^{1-p}||{\cdot}|||B^{-1}|^{1-p}||\;{\leq}\;1$.Then $A^*X\;=\;XB^*$.

  • PDF

ON STAR MOMENT SEQUENCE OF OPERATORS

  • Park, Sun-Hyun
    • Honam Mathematical Journal
    • /
    • v.29 no.4
    • /
    • pp.569-576
    • /
    • 2007
  • Let $\cal{H}$ be a separable, infinite dimensional, complex Hilbert space. We call "an operator $\cal{T}$ acting on $\cal{H}$ has a star moment sequence supported on a set K" when there exist nonzero vectors u and v in $\cal{H}$ and a positive Borel measure ${\mu}$ such that <$T^{*j}T^ku$, v> = ${^\int\limits_{K}}\;{{\bar{z}}^j}\;{{\bar{z}}^k}\;d\mu$ for all j, $k\;\geq\;0$. We obtain a characterization to find a representing star moment measure and discuss some related properties.

ON THE SPECTRAL MAXIMAL SPACES OF A MULTIPLICATION OPERATOR

  • Park, Jae-Chul;Yoo, Jong-Kwang
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.205-216
    • /
    • 1996
  • In [13], Ptak and Vrbova proved that if T is a bounded normal operator T on a complex Hilbert space H, then the ranges of the spectral projections can be represented in the form $$ \varepsilon(F)H = \bigcap_{\lambda\notinF} (T - \lambda I) H for all closed subsets F of C, $$ where $\varepsilon$ denotes the spectral measure associated with T.

  • PDF

COMPLEX SYMMETRIC WEIGHTED COMPOSITION-DIFFERENTIATION OPERATORS ON H2

  • Lian Hu;Songxiao Li;Rong Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1141-1154
    • /
    • 2023
  • In this paper, we study the complex symmetric weighted composition-differentiation operator D𝜓,𝜙 with respect to the conjugation JW𝜉,𝜏 on the Hardy space H2. As an application, we characterize the necessary and sufficient conditions for such an operator to be normal under some mild conditions. Finally, the spectrum of D𝜓,𝜙 is also investigated.

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 IN A COMPLEX SPACE FORM WITH 𝜉-PARALLEL STRUCTURE JACOBI OPERATOR

  • U-Hang KI;Hyunjung SONG
    • East Asian mathematical journal
    • /
    • v.40 no.1
    • /
    • pp.1-23
    • /
    • 2024
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (𝜙, 𝜉, 𝜂, g) in a complex space form Mn+1(c). We denote by A, K and L the second fundamental forms with respect to the unit normal vector C, D and E respectively, where C is the distinguished normal vector, and by R𝜉 = R(𝜉, ·)𝜉 the structure Jacobi operator. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a scalar 𝜃(≠ 2c) and any vector fields X and Y , and at the same time R𝜉K = KR𝜉 and ∇𝜙𝜉𝜉R𝜉 = 0. In this paper, we prove that if it satisfies ∇𝜉R𝜉 = 0 on M, then M is a real hypersurface of type (A) in Mn(c) provided that the scalar curvature $\bar{r}$ of M holds $\bar{r}-2(n-1)c{\leq}0$.

UPPER TRIANGULAR OPERATORS WITH SVEP

  • Duggal, Bhagwati Prashad
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.235-246
    • /
    • 2010
  • A Banach space operator A $\in$ B(X) is polaroid if the isolated points of the spectrum of A are poles of the resolvent of A; A is hereditarily polaroid, A $\in$ ($\mathcal{H}\mathcal{P}$), if every part of A is polaroid. Let $X^n\;=\;\oplus^n_{t=i}X_i$, where $X_i$ are Banach spaces, and let A denote the class of upper triangular operators A = $(A_{ij})_{1{\leq}i,j{\leq}n$, $A_{ij}\;{\in}\;B(X_j,X_i)$ and $A_{ij}$ = 0 for i > j. We prove that operators A $\in$ A such that $A_{ii}$ for all $1{\leq}i{\leq}n$, and $A^*$ have the single-valued extension property have spectral properties remarkably close to those of Jordan operators of order n and n-normal operators. Operators A $\in$ A such that $A_{ii}$ $\in$ ($\mathcal{H}\mathcal{P}$) for all $1{\leq}i{\leq}n$ are polaroid and have SVEP; hence they satisfy Weyl's theorem. Furthermore, A+R satisfies Browder's theorem for all upper triangular operators R, such that $\oplus^n_{i=1}R_{ii}$ is a Riesz operator, which commutes with A.