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THE EXISTENCE RESULTS OF
COUPLED QUASI-SOLUTIONS FOR A CLASS OF

OPERATOR EQUATIONS

Yeol Je Cho, Guang He, and Nan-jing Huang

Abstract. In this paper, by using the semi-order method, two new exis-
tence theorems of coupled quasi-solutions for a class of nonlinear operator
equations in Banach spaces are proved under some suitable conditions.

1. Introduction

It is well known that the nonlinear operator theory plays an important role
in nonlinear functional analysis, nonlinear programmings, nonlinear differen-
tial equations, nonlinear variational inequalities and complementarity problems
(see, for example, [2, 1, 6] and the references therein).

In 1987, Guo and Lakshmikantham [7] studied the following nonlinear oper-
ator equation:

x = A(x, x),(1.1)

where A is a mixed monotone operator in Banach spaces. They obtained some
existence results of coupled solution for the nonlinear operator equation (1.1).
A generalization of (1.1) involving set-valued operators was introduced and
studied by Huang, Tang, and Liu [9].

Recently, Feng and Liu [5] considered the following operator equation:

Nx = Ax(1.2)

in complete metric spaces and Banach spaces, respectively. They obtained
some existence results of solution for the equation (1.2) by using the technique
of partial order theory.
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Very recently, He et al. [8] introduced and studied the following nonlinear
operator equation:

Nx = A(x, x)(1.3)

in Banach spaces. By using the concept of φ concave-(-ψ) convex operator
introduced by Xu and Jia [12], they obtained some new solvability results for
the nonlinear operator equation (1.3).

On the other hand, by using the semi-order method, Duan and Li [4] studied
the existence of coupled minimal-maximal quasi-solutions for the nonlinear op-
erator equation (1.1) in Banach spaces and proved some new existence results.

Motivated and inspired by the works mentioned above, in this paper, we
further study the solvability of coupled quasi-solutions for the nonlinear op-
erator equation (1.3) by using the semi-order method. Under some suitable
conditions, we prove two new existence theorems of coupled quasi-solutions for
the nonlinear operator equation (1.3) in Banach spaces.

2. Preliminaries

Let E be a real Banach space. A nonempty convex closed set P is called a
cone if it satisfies the following conditions:

(i) x ∈ P and λ ≥ 0 imply that λx ∈ P ;
(ii) x ∈ P and −x ∈ P imply that x = θ, where θ denotes the zero element

of E.
Let (E,≤) be a partial ordering space induced by the cone P of E, i.e., for

any x, y ∈ E, x ≤ y if and only if y − x ∈ P .
Now, we define a norm in E × E as follows:

‖(x, y)‖E×E = max{‖x‖, ‖y‖}, ∀x, y ∈ E.
Obviously, E × E is a Banach space with the norm ‖(·, ·)‖.

Let
P1 = {(x, y) ∈ E × E : x ≥ θ, y ≤ θ},

where θ denotes the zero element of E. It is easy to see that P1 is a cone in
E × E and P1 defines a partial order in E × E as follows:

(x, y) ≤ (u, v) if and only if x ≤ u and y ≥ v.(2.1)

Definition 2.1. LetD be a nonempty subset of E. An operator A : D×D → E
is said to be mixed monotone if, for any xi, yi ∈ D with i = 1, 2, x1 ≤ x2 and
y2 ≤ y1 imply that

A(x1, y1) ≤ A(x2, y2).

Definition 2.2. A point (x∗, y∗) ∈ D ×D is said to be:
(i) a coupled solution of the nonlinear operator equation (1.3) if

Nx∗ = A(x∗, y∗), Ny∗ = A(y∗, x∗);
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(ii) a coupled minimal-maximal solution of the nonlinear operator equation
(1.3) if (x∗, y∗) is a coupled solution of the nonlinear operator equation
(1.3) such that, for any coupled solution (u∗, v∗) of (1.3), x∗ ≤ u∗ and
y∗ ≥ v∗.

Definition 2.3. Let L(E) be the space of all linear operators on E. T ∈ L(E)
is said to be a linear positive operator if x ≥ θ implies Tx ≥ θ.

Definition 2.4. Let x0, y0 ∈ E with x0 < y0. The set defined by

[x0, y0] = {z|x0 ≤ z ≤ y0}
is called an ordered interval in E.

We assume that the following conditions are satisfied:
(H1) There is λ ∈ (0, 1] such that (λI + T )−1 ∈ L(E) exists and

(λI + T )−1x ≥ θ =⇒ x ∈ P ;

(H2) T : E → E is a bounded linear positive operator.

For any subset D of E, throughout this paper, we denote the weak closure of
D, the closed convex hull of D under the norm ‖(·, ·)‖E×E , and the complement
of D by D

w
, co(D), and CD, respectively.

Lemma 2.1. If T ∈ L(E) and there exists λ ∈ (0, 1] with (λI + T )−1 ∈ L(E),
then

(λI + T )−1[λA(x, y) + Tu] = u⇐⇒ A(x, y) = u(2.2)

and

(λI + T )−1[λA(y, x) + Tv] = v ⇐⇒ A(y, x) = v,(2.3)

where u = Nx and v = Ny.

Proof. Obviously,
(λI + T )−1[λA(x, y) + Tu] = u

if and only if
λA(x, y) + Tu = (λI + T )u

and λA(x, y) = λu if and only if A(x, y) = u. It follows that (2.2) is true.
Similarly, we can show that (2.3) holds. This completes the proof. ¤

Lemma 2.2 ([3]). If T ∈ L(E) satisfies the condition (H1) for some λ ∈ (0, 1],
then (λI + T )−1 is a positive linear operator.

Lemma 2.3. Let G : D ×D → E be a mixed monotone operator and N be a
nonlinear operator. Let

H(x, y) ∆= (G(x, y), G(y, x)), B(x, y) ∆= (Nx,Ny), ∀(x, y) ∈ D ×D.

Then the following conclusions hold:
(1) H is an increasing operator on the partial ordering deduced by P1;
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(2) H(x, y) = B(x, y) has a solution (x∗, y∗) if and only if (x∗, y∗) is a
coupled solution of Nx = G(x, x);

(3) A minimal solution of H(x, y) = B(x, y) is a coupled minimal-maximal
solution of Nx = G(x, x).

Proof. By [16], we know that (1) holds.
Now, we show that (2) is true. In fact, (x∗, y∗) is a solution of H(x, y) =

B(x, y) if and only if (x∗, y∗) is a solution of (Nx,Ny) = (G(x, y), G(y, x)),
i.e.,

Nx∗ = G(x∗, y∗), Ny∗ = G(y∗, x∗).

Thus H(x, y) = B(x, y) has a solution (x∗, y∗) if and only if (x∗, y∗) is a coupled
solution of Nx = G(x, x).

Next, we prove that (3) holds. Suppose that (u∗, v∗) is a minimal solution
of H(x, y) = B(x, y). For any solution (u, v) of H(x, y) = B(x, y), we know
that (u∗, v∗) ≤ (u, v). It follows from (2.1) that u∗ ≤ u and v ≤ v∗. By (2)
and Definition 2.2, it is easy to see that (u∗, v∗) is a coupled minimal-maximal
solution of Nx = G(x, x). This completes the proof. ¤

Lemma 2.4 ([10]). Let (E,P ) be a partial ordering Banach space, D be a
nonempty subset of E, and y ∈ E. If z ≤ y (resp., y ≤ z) for all z ∈ D, then
z ≤ y (resp., y ≤ z) for all z ∈ co(D).

3. Main results

Theorem 3.1. Let E be a real Banach space and P a cone of E. Let D0 =
[u0, v0] be an ordered interval in E and N be an increasing operator with
N(D0) = D0. Suppose that an operator

A : D ∆= [(u0, v0), (v0, u0)] → E

satisfies the conditions (H1) and (H2). If

(i) Nu0 ≤ A(u0, v0) and A(v0, u0) ≤ Nv0;
(ii) For any u0 ≤ x1 ≤ x2 ≤ v0 and u0 ≤ y1 ≤ y2 ≤ v0, we have

A(x2, y1)−A(x1, y2) ≥ −T (u2, u1),

where u1 = Nx1 and u2 = Nx2;
(iii) For any x1, x2 ∈ D0, Nx1 ≤ Nx2 implies x1 ≤ x2;
(iv) Any totally ordered subset in G(D) is relatively compact with weak

topology, where

G(x, y) ∆= (λI + T )−1[λA(x, y) + Tu]

and u = Nx for all (x, y) ∈ D.

Then the nonlinear operator equation (1.3) has a coupled quasi-solution (x∗, y∗)
∈ D.
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Proof. It follows from the condition (H1) and Lemma 2.2 that (λI + T )−1 is a
positive operator. By the assumption (H2) and the conditions (i) and (ii), we
have

(I) G : D → [u0, v0] is a mixed monotone operator;
(II) Nu0 ≤ G(u0, v0), G(v0, u0) ≤ Nv0.
Now we show that the following nonlinear operator equation

B(x, y) = H(x, y)(3.1)

has a solution in D, where

H(x, y) ∆= (G(x, y), G(y, x)), B(x, y) ∆= (N(x), N(y)).

From (I) and Lemma 2.3, it is easy to see that H is an increasing operator. Let

M1 = {(x, y) ∈ D : (Nx,Ny) ≤ H(x, y)}, M2 = {(y, x) : (x, y) ∈M1}.
By (II), we have (u0, v0) ∈ M1 and so M1 is nonempty. Suppose that K1 is a
total ordering subset of M1. Then K2 = {(y, x)|(x, y) ∈ K1} is a total ordering
subset of M2. For any fixed w ∈ D0, let

R1(w) = {z ∈ D0 : w ≤ z}, R2(w) = {z ∈ D0 : z ≤ w}.
Since P is closed and convex, we know that R1(w) and R2(w) are both closed
and convex. For any q1 ∈ G(K1) and q2 ∈ G(K2), let

S1(q1) = co(G(K1))
⋂
R1(q1), S2(q2) = co(G(K2))

⋂
R2(q2).

Since R1(q1) and R2(q2) are convex and closed, it is easy to see that S1(q1)
and S2(q2) are both convex and closed. Now the mixed monotonicity of G
implies that G(Ki) (i = 1, 2) are total ordering subsets of G(D). From the
condition (iv), we know that G(Ki)

w
(i = 1, 2) are weakly compact sets in

G(D). It follows from Krein-Smulian Theorem (see, for example, [2] or [13])
that co(G(Ki))w (i = 1, 2) are also weakly compact. Since

co(G(Ki)) ⊂ co(G(Ki))w (i = 1, 2),

we know that co(G(Ki)) (i = 1, 2) are weakly compact.
For any qi ∈ G(Ki) (i = 1, 2), we have qi ∈ Si(qi) and so Si(qi) (i = 1, 2) are

nonempty. For any q′1, q
′
2, . . . , q

′
n ∈ G(K1) and q′′1 , q

′′
2 , . . . , q

′′
n ∈ G(K2), without

loss of generality, we can suppose that

q′1 ≤ q′2 ≤ · · · ≤ q′n and q′′1 ≤ q′′2 ≤ · · · ≤ q′′n.

Thus we have
S1(q′1) ⊃ S1(q′2) ⊃ · · · ⊃ S1(q′n)

and
S2(q′′1 ) ⊂ S2(q′′2 ) ⊂ · · · ⊂ S2(q′′n).

It follows that

∅ 6= S1(q′n) ⊂
n⋂

i=1

S1(q′i), S2(q′′1 ) ⊂
n⋂

i=1

S2(q′′i ) 6= ∅.(3.2)
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Now, we prove that
⋂

qi∈G(Ki)
Si(qi) (i = 1, 2) are nonempty. In fact, sup-

pose that
⋂

qi∈G(Ki)
Si(qi) = ∅ for i = 1, 2. Then we have

co(G(Ki)) ⊂
⋃

qi∈G(Ki)

CSi(qi), i = 1, 2.(3.3)

It follows from (3.3) that {CSi(qi) : qi ∈ G(Ki)} is an open covering of
co(G(Ki)) under weakly topology for i = 1, 2. Since co(G(Ki)) is weakly
compact, co(G(Ki)) has a finite sub-covering for i = 1, 2. Thus there exist
q′1, q

′
2, . . . , q

′
m ∈ G(K1) and q′′1 , q

′′
2 , . . . , q

′′
l ∈ G(K2) such that

co(G(K1)) ⊂
m⋃

i=1

CS1(q′i), co(G(K2)) ⊂
l⋃

i=1

CS2(q′′i ).(3.4)

Noticing
S1(q′i) ⊂ co(G(K1)), ∀i = 1, 2, . . . ,m,

and
S2(q′′i ) ⊂ co(G(K2)), ∀i = 1, 2, . . . , l,

it follows from (3.4) that
m⋂

i=1

S1(q′i) ⊂ co(G(K1)) ⊂
m⋃

i=1

CS1(q′i),
l⋂

i=1

S2(q′′i ) ⊂ co(G(K2)) ⊂
l⋃

i=1

CS2(q′′i )

and so
m⋂

i=1

S1(q′i) = ∅,
l⋂

i=1

S2(q′′i ) = ∅,

which contradicts (3.2). Therefore,
⋂

qi∈G(Ki)
Si(qi) is nonempty and there

exists q∗i ∈ ⋂
qi∈G(Ki)

Si(qi) such that q∗i ∈ Si(qi) for all qi ∈ G(Ki) with
i = 1, 2. Thus q∗i ∈ Ri(qi) for all qi ∈ G(Ki). By the construction of Ri(qi),
we have

q1 ≤ q∗1 , q2 ≥ q∗2 .(3.5)

Since N(D0) = D0, we know that there exist w1, w2 ∈ D0 such that

Nw1 = q∗1 , Nw2 = q∗2 .

Now, for any (x, y) ∈ K1, we have (y, x) ∈ K2. It follows from (3.5) that

G(x, y) ≤ q∗1 = Nw1, Nw2 = q∗2 ≤ G(y, x).

Since K1 ⊂M1,

(Nx,Ny) ≤ H(x, y) = (G(x, y), G(y, x))

and so
Nx ≤ G(x, y), G(y, x) ≤ Ny.

Thus it follows that
Nx ≤ Nw1, Nw2 ≤ Ny.
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From the condition (3), we have

x ≤ w1, w2 ≤ y.

Now, (2.1) implies that

(x, y) ≤ (w1, w2)(3.6)

and so (w1, w2) is an upper bound of K1.
Next, we show that (w1, w2) ∈M1, that is,

B(w1, w2) = (Nw1, Nw2) ≤ H((w1, w2)).

In fact, for any (x, y) ∈ K1, we have (y, x) ∈ K2 and so

(x, y) ≤ (w1, w2), (y, x) ≥ (w2, w1).

Now, the mixed monotonicity of G implies that

G(x, y) ≤ G(w1, w2), G(y, x) ≥ G(w2, w1).

It follows from Lemma 2.4 that, for Nwi = q∗i ∈ Ri(qi) ⊂ co(G(Ki)) (i = 1, 2),

Nw1 ≤ G(w1, w2), G(w2, w1) ≤ Nw2

and so

(3.7) (Nw1, Nw2) ≤ (G(w1, w2), G(w2, w1)) = H(w1, w2).

Now, (3.7) shows that (w1, w2) ∈ M1. It follows from Zorn’s lemma that M1

contains a maximal element (x∗, y∗).
Finally, we prove that (x∗, y∗) is a solution of the nonlinear operator equation

(3.1). We first show the following conclusion holds:

(3.8) B(x1, y1) ≤ B(x2, y2), (xi, yi) ∈ D (i = 1, 2) =⇒ (x1, y1) ≤ (x2, y2).

In fact, it follows from the definition of B that

B(x1, y1) = (Nx1, Ny1) ≤ (Nx2, Ny2) = B(x2, y2)

and so
Nx1 ≤ Nx2, Ny2 ≤ Ny1.

By the condition (iii), we have x1 ≤ x2 and y2 ≤ y1 and so (x1, y1) ≤ (x2, y2).
Since (x∗, y∗) ∈M1,

B(x∗, y∗) ≤ H(x∗, y∗) = B(B−1H(x∗, y∗))

and so (3.8) implies that

(x∗, y∗) ≤ B−1H(x∗, y∗).

By the monotonicity of H, we have

B(B−1H(x∗, y∗)) = H(x∗, y∗) ≤ H(B−1H(x∗, y∗))

and so, B−1H(x∗, y∗) ∈ M1. We next show that B is an increasing operator.
If (x1, y1) ≤ (x2, y2), then x1 ≤ x2 and y2 ≤ y1. By the monotonicity of N , we
have

Nx1 ≤ Nx2, Ny2 ≤ Ny1
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and so
B(x1, y1) = (Nx1, Ny1) ≤ (Nx2, Ny2) = B(x2, y2).

Thus B is an increasing operator. Since (x∗, y∗) is a maximal element of M1

and B is increasing, we have

B(B−1H(x∗, y∗)) = H(x∗, y∗) ≤ B(x∗, y∗)

and so H(x∗, y∗) = B(x∗, y∗), that is,

Nx∗ = G(x∗, y∗), Ny∗ = G(y∗, x∗).

It follows from Lemma 2.1 that

Nx∗ = A(x∗, y∗), Ny∗ = A(y∗, x∗)

and so (x∗, y∗) is a coupled quasi-solution of the equation (1.3). This completes
the proof. ¤

Theorem 3.2. Suppose that all the conditions of Theorem 3.1 are satisfied.
Then the nonlinear operator equation (1.3) has a coupled minimal and maximal
quasi-solution (x∗, y∗) ∈ D.

Proof. Let F (H) = {(x, y) ∈ D : H(x, y) = B(x, y)}. Then Theorem 3.1
implies that F (H) is nonempty. Let

S
∆= {[(u, v), (v, u)] : B(u, v) ≤ H(u, v), (u, v) ∈ D,F (H) ⊂ [(u, v), (v, u)]},

where [(u, v), (v, u)] is an ordered interval in E×E. It is easy to see that D ∈ S
and so S 6= ∅. We define the ordering “ ≤ ” in S as follows:

I1, I2 ∈ S, I1 ≤ I2 ⇐⇒ I1 ⊂ I2.(3.9)

Now, we show that S has a minimal element. Suppose that

Γ = {[(uα, vα), (vα, uα)] : α ∈ Λ}
is a total ordering subset of S, where Λ is an index set. Let

R1 = {(uα, vα) : α ∈ Λ}, R2 = {(vα, uα) : α ∈ Λ}.
Then R1 and R2 are total ordering subsets of D. It follows from the mixed
monotonicity of G that G(Ri) (i = 1, 2) are total ordering subsets of E.

Let K1 = R1 and K2 = R2 be the same as in the proof of Theorem 3.1.
Then, by the similar proofs for (3.6) and (3.7), we know that there exist qi ∈
co(G(Ri)) (i = 1, 2) with Nwi = qi such that

(uα, vα) ≤ (w1, w2), ∀α ∈ Λ,(3.10)

and

B(w1, w2) = (Nw1, Nw2) ≤ H(w1, w2).(3.11)

Let (x, y) ∈ F (H). For any given (uα, vα) ∈ R1, we have (vα, uα) ∈ R2. It
follows from the definition of S that

(uα, vα) ≤ (x, y) ≤ (vα, uα).
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Now, the mixed monotonicity of G implies that

G(uα, vα) ≤ G(x, y) ≤ G(vα, uα).

Since qi ∈ co(G(Ri)), Lemma 2.4 implies that

Nw1 ≤ G(x, y) ≤ Nw2.(3.12)

Let (x, y) ∈ F (H). For any given (vα, uα) ∈ R2, it is easy to see that (uα, vα) ∈
R1. Similarly to the proof of (3.12), we have

Nw1 ≤ G(x, y) ≤ Nw2.

Thus it follows that

(Nw1, Nw2) ≤ (G(x, y), G(y, x)) = H(x, y) = (Nx,Ny)

and
(Nw2, Nw1) ≥ (G(x, y), G(y, x)) = H(x, y) = (Nx,Ny).

By the condition (3),

(w1, w2) ≤ (x, y) ≤ (w2, w1), ∀ (x, y) ∈ F (H).(3.13)

Let
I = [(w1, w2), (w2, w1)].

Then it follows from (3.11) and (3.13) that I ∈ S.
Now, we prove that I is a lower bound of Γ. In fact, for any α ∈ Λ, (3.10)

implies that
(uα, vα) ≤ (w1, w2), (vα, uα) ≥ (w2, w1),

which show that
I ⊂ [(uα, vα), (vα, uα)]

and so I is a lower bound of Γ in S. It follows from Zorn’s lemma that S
contains a minimal element I∗. Let I∗ = [(x∗, y∗), (y∗, x∗)]. Then

B(x∗, y∗) ≤ H(x∗, y∗) = B(B−1H(x∗, y∗)).

From (3.8), we have (x∗, y∗) ≤ B−1H(x∗, y∗). By the monotonicity of H,

B(B−1H(x∗, y∗)) = H(x∗, y∗) ≤ H(B−1H(x∗, y∗)).

For any (x, y) ∈ F (H), the monotonicity of H and the definition of S show
that

H(x∗, y∗) ≤ H(x, y) = B(x, y) ≤ H(y∗, x∗)
and so

B(B−1H(x∗, y∗)) ≤ B(B−1H(x, y)) = B(x, y) ≤ B(B−1H(y∗, x∗)).

It follows from (3.8) that

B−1H(x∗, y∗) ≤ (x, y) ≤ B−1H(y∗, x∗)

and so [B−1H(x∗, y∗), B−1H(y∗, x∗)] ∈ S. Therefore, we have

(x∗, y∗) ≤ B−1H(x∗, y∗), (y∗, x∗) ≥ B−1H(y∗, x∗).
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It follows from (3.9) that

I∗ = [(x∗, y∗), (y∗, x∗)] ≥ [B−1H(x∗, y∗), B−1H(y∗, x∗)].

By virtue of the minimality of I∗, we know that B−1H(x∗, y∗) = (x∗, y∗) and
so H(x∗, y∗) = B(x∗, y∗). Therefore, (x∗, y∗) is a minimal solution of the
nonlinear operator equation H(x, y) = B(x, y). It follows from Lemma 2.3
that (x∗, y∗) is a coupled minimal-maximal solution of the nonlinear operator
equation Nx = G(x, x). Now, Lemmas 2.1 and 2.2 imply that (x∗, y∗) is
a coupled minimal-maximal quasi-solution of the nonlinear operator equation
(1.3). This completes the proof. ¤

Remark 3.1. Theorems 3.1 and 3.2 presented in this paper generalize and im-
prove Theorems 2.1 and 2.2 of Duan and Li [4], respectively. Therefore, our
results also generalize and improve some corresponding results of Chen [3],
Zhou and Yu [16], Liu and Wu [10], Syau [11], Zhang [14], Zhang and Xie [15].

Remark 3.2. We would like to point out Theorems 3.1 and 3.2 do not require
any continuity for the operator A.
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