COMPLEX SYMMETRIC WEIGHTED COMPOSITION-DIFFERENTIATION OPERATORS ON H^{2}

Lian Hu, Songxiao Li, and Rong Yang

Abstract

In this paper, we study the complex symmetric weighted composition-differentiation operator $D_{\psi, \phi}$ with respect to the conjugation $J W_{\xi, \tau}$ on the Hardy space H^{2}. As an application, we characterize the necessary and sufficient conditions for such an operator to be normal under some mild conditions. Finally, the spectrum of $D_{\psi, \phi}$ is also investigated.

1. Introduction

Let \mathbb{D} denote the open unit disc in the complex plane \mathbb{C}. Let $H(\mathbb{D})$ be the space of analytic functions on \mathbb{D}. The Hardy space H^{2} is the space of all $f \in H(\mathbb{D})$ with square summable power series coefficients; that is, $f \in H(\mathbb{D})$ for which

$$
\|f\|_{H^{2}}^{2}=\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}<\infty
$$

where $\left\{a_{n}\right\}$ is the sequence of Maclaurin coefficients for f. The space $H^{2}(\mathbb{D})$ is a reproducing kernel Hilbert space. In other words, for any $w \in \mathbb{D}$, there exists a unique function $K_{w} \in H^{2}$ such that

$$
f(w)=\left\langle f, K_{w}\right\rangle
$$

for any $f \in H^{2}$. It is well known that $K_{w}(z)=\frac{1}{1-\bar{w} z}$.
Let φ be an analytic self-map of \mathbb{D} and $\psi \in H(\mathbb{D})$. The operator $C_{\phi}: H^{2} \rightarrow$ H^{2} given by $C_{\phi} f=f(\phi)$ is called a composition operator. The weighted composition operator $W_{\psi, \phi}$ on H^{2} is defined as $W_{\psi, \phi} f=\psi \cdot(f \circ \phi)$. For $f \in H(\mathbb{D})$, the composition-differentiation operator D_{ϕ} (see [3]) is defined by

$$
D_{\phi} f(z)=f^{\prime}(\phi(z)), \quad z \in \mathbb{D},
$$

[^0]and the weighted composition-differentiation operator $D_{\psi, \phi}$ (see [4]) is defined by
$$
D_{\psi, \phi} f(z)=\psi(z) f^{\prime}(\phi(z)), \quad z \in \mathbb{D} .
$$

Let H and $\mathcal{L}(H)$ represent a separable complex Hilbert space and the class of continuous linear operators on H, respectively. An operator $C: H \rightarrow H$ is called a conjugation on H if it is
(i) conjugate-linear or anti-linear: $C(\alpha x+\beta y)=\bar{\alpha} C(x)+\bar{\beta} C(y)$ for any $x, y \in H$ and $\alpha, \beta \in \mathbb{C}$;
(ii) isometric: $\|C x\|=\|x\|$ for any $x \in H$;
(iii) involutive: $C^{2}=I$, where I is the identity operator.

It is easy to check that

$$
(J f)(z)=\overline{f(\bar{z})}
$$

is a conjugation on the space H^{2}.
An operator $T \in \mathcal{L}(H)$ is called complex symmetric if there exists a conjugation C on H such that

$$
T=C T^{*} C
$$

In this situation, we say that T is complex symmetric with respect to C or that T is C-symmetric. The class of complex symmetric operators includes all normal operators, binormal operators, Hankel operators, compressed Toeplitz operators and Volterra integration operator. Complex symmetric operators can be regarded as a generalization of complex symmetric matrices. The general study of complex symmetric operators was initiated by Garcia, Putinar and Wogen in [6-9].

Recently, the study of complex symmetric composition operators, weighted composition operator and weighted composition-differentiation operators on some analytic function spaces has attracted the interest of many researchers. Fatehi and Hammond in [4] studied some properties of weighted compositiondifferentiation operators. Han and Wang studied complex symmetric weighted composition-differentiation operators on the Hardy space and the Bergman space in [11] and [12], respectively. Liu et al. studied complex symmetric weighted composition-differentiation operators on the weighted Bergman space A_{α}^{2} and the derivative Hardy space in [16]. See [2-20] for more results and applications pertaining to complex symmetric operators.

In this paper, we investigate complex symmetric weighted compositiondifferentiation operators $D_{\psi, \phi}$ on the Hardy space H^{2}. The paper is organized as follows. Section 2 provides conditions on ϕ and ψ relating to when the operator $D_{\psi, \phi}$ is complex symmetric with respect to the conjugation $J W_{\xi, \tau}$. As an application, we obtain necessary and sufficient conditions for the operator $D_{\psi, \phi}$ to be normal under some mild conditions. In Section 3, we characterize the spectrum of the operator $D_{\psi, \phi}$.

2. Main results

For any positive integer n, let

$$
K_{w}^{(n)}(z)=\frac{n!z^{n}}{(1-\bar{w} z)^{1+n}}, \quad z \in \mathbb{D}
$$

From Lemma 2.16 in [1], we see that $K_{w}^{(n)}$ acts as the reproducing kernel for point evaluation of the n-th derivative:

$$
f^{(n)}(w)=\left\langle f, K_{w}^{(n)}\right\rangle
$$

for each $f \in H^{2}$. The following lemma can be found in [12].
Lemma 2.1. Let ϕ be an analytic self-map of \mathbb{D} and $\psi \in H(\mathbb{D})$. If $D_{\psi, \phi}$ is bounded on H^{2}, then

$$
D_{\psi, \phi}^{*} K_{w}=\overline{\psi(w)} K_{\phi(w)}^{(1)}
$$

and

$$
D_{\psi, \phi}^{*} K_{w}^{(1)}=\overline{\psi^{\prime}(w)} K_{\phi(w)}^{(1)}+\overline{\psi(w) \phi^{\prime}(w)} K_{\phi(w)}^{(2)}
$$

for every $w \in \mathbb{D}$.
Let

$$
\xi(z)=\frac{\sqrt{1-|a|^{2}}}{1-\bar{a} z} \text { and } \tau(z)=\frac{\lambda(a-z)}{1-\bar{a} z}
$$

where $a \in \mathbb{D}$ and $|\lambda|=1$. From [13, Lemma 2], we see that $J W_{\xi, \tau}$ is a conjugation on H^{2} if and only if $\lambda a=\bar{a}$. Obviously, for any $f \in H(\mathbb{D})$,

$$
J W_{\xi, \tau} f(z)=\frac{\sqrt{1-|a|^{2}}}{1-a z} f\left(\frac{\lambda(a-\bar{z})}{1-\overline{a z}}\right), z \in \mathbb{D}
$$

Proposition 2.2. Let $\xi(z)=\frac{\sqrt{1-|a|^{2}}}{1-\bar{a} z}$ and $\tau(z)=\frac{\lambda(a-z)}{1-\bar{a} z}$, where $a \in \mathbb{D}$ and $|\lambda|=1$ such that $\lambda a=\bar{a}$. Let ϕ be a nonconstant analytic self-map of \mathbb{D} and $\psi \in H^{\infty}$. If $D_{\psi, \phi}$ is complex symmetric with respect to the conjugation $J W_{\xi, \tau}$, then the following statements hold:
(a) Either $\psi \equiv 0$ or ψ has a single vanishing point \bar{a}.
(b) If ψ is not identically zero, then ϕ is univalent and

$$
\psi=\frac{J W_{\xi, \tau} \overline{\psi(\beta)} K_{\phi(\beta)}^{(1)}}{\overline{\xi(\bar{\beta}) \tau(\bar{\beta})} K_{\tau(\bar{\beta})}^{2}(\phi)}
$$

for any $\beta \in \mathbb{D} \backslash \bar{a}$.
Proof. (a) Assume that $\psi(\beta)=0$ for some $\beta \in \mathbb{D}$. Lemma 2.1 gives that

$$
D_{\psi, \phi}^{*} K_{\beta}=\overline{\psi(\beta)} K_{\phi(\beta)}^{(1)}=0
$$

Since $D_{\psi, \phi} J W_{\xi, \tau}=J W_{\xi, \tau} D_{\psi, \phi}^{*}$ and $J W_{\xi, \tau}$ is an isometry, it follows that

$$
\left\|D_{\psi, \phi} J W_{\xi, \tau} K_{\beta}\right\|=\left\|D_{\psi, \phi}^{*} K_{\beta}\right\|=0
$$

Therefore,

$$
\begin{aligned}
D_{\psi, \phi} J W_{\xi, \tau} K_{\beta}(z) & =\psi(z)\left(J W_{\xi, \tau} K_{\beta}(z)\right)^{\prime} \circ \phi(z) \\
& =\psi(z) \frac{\sqrt{1-|a|^{2}}(a-\beta \bar{\lambda})}{[1-\beta a-(a-\beta \bar{\lambda}) \phi(z)]^{2}}=0
\end{aligned}
$$

for all $z \in \mathbb{D}$. Thus $\psi \equiv 0$ or $\beta=\bar{a}$.
(b) Assume that ϕ is not univalent. Then there are two distinct points $w_{1}, w_{2} \in \mathbb{D}$ such that $\phi\left(w_{1}\right)=\phi\left(w_{2}\right)$. Since ψ is not identically zero, it follows from (a) that at least one of $\psi\left(w_{1}\right)$ and $\psi\left(w_{2}\right)$ is not 0 . If neither $\psi\left(w_{1}\right)$ or $\psi\left(w_{2}\right)$ is 0 , let

$$
f=\frac{K_{w_{1}}}{\overline{\psi\left(w_{1}\right)}}-\frac{K_{w_{2}}}{\overline{\psi\left(w_{2}\right)}}
$$

and observe that f is a nonconstant function in H^{2}. For any $g \in H^{2}$, we have that

$$
\begin{aligned}
\left\langle g, D_{\psi, \phi}^{*} f\right\rangle & =\left\langle D_{\psi, \phi} g, f\right\rangle \\
& =\left\langle D_{\psi, \phi} g, \frac{K_{w_{1}}}{\overline{\psi\left(w_{1}\right)}}-\frac{K_{w_{2}}}{\overline{\psi\left(w_{2}\right)}}\right\rangle \\
& =\frac{1}{\psi\left(w_{1}\right)}\left\langle D_{\psi, \phi} g, K_{w_{1}}\right\rangle-\frac{1}{\psi\left(w_{2}\right)}\left\langle D_{\psi, \phi} g, K_{w_{2}}\right\rangle \\
& =g^{\prime}\left(\phi\left(w_{1}\right)\right)-g^{\prime}\left(\phi\left(w_{2}\right)\right)=0 .
\end{aligned}
$$

Since $D_{\psi, \phi}$ is complex symmetric with respect to the conjugation $J W_{\xi, \tau}$, we have

$$
\left\|D_{\psi, \phi} J W_{\xi, \tau} f\right\|=\left\|J W_{\xi, \tau} D_{\psi, \phi}^{*} f\right\|=\left\|D_{\psi, \phi}^{*} f\right\|=0
$$

Therefore,

$$
D_{\psi, \phi} J W_{\xi, \tau} f(z)=\psi(z)\left(J W_{\xi, \tau} f(z)\right)^{\prime} \circ \phi(z)=0
$$

for any $z \in \mathbb{D}$. Since ψ is not identically zero, we have $\left(J W_{\xi, \tau} f(z)\right)^{\prime} \circ \phi(z)=0$ for any $z \in \mathbb{D}$. Since ϕ is a nonconstant analytic self-map of \mathbb{D}, we obtain that $J W_{\xi, \tau} f$ is a constant function; that is, f is a constant function, which is a contradiction. Thus ϕ is univalent. If either $\psi\left(w_{1}\right)$ or $\psi\left(w_{2}\right)$ is 0 , without loss of generality, assume that $\psi\left(w_{1}\right)=0$; that is $w_{1}=\bar{a}$. Let

$$
f=\overline{\psi\left(w_{2}\right)} K_{w_{1}} .
$$

Then

$$
D_{\psi, \phi}^{*} \overline{\psi\left(w_{2}\right)} K_{w_{1}}=\overline{\psi\left(w_{2}\right) \psi\left(w_{1}\right)} K_{w_{1}}^{(1)}=0
$$

which means that f is a constant. Indeed, the kernel of $D_{\psi, \phi}$ and $D_{\psi, \phi}^{*}$ consists of the constant functions in $H(\mathbb{D})$. Hence $\psi\left(w_{2}\right)=0$; that is $w_{2}=\bar{a}$, which is a contradiction.

Let $\beta \in \mathbb{D}$ be given. Since $D_{\psi, \phi}$ is complex symmetric with respect to the conjugation $J W_{\xi, \tau}$, using Lemma 2.1, we get that

$$
J W_{\xi, \tau} \overline{\psi(\beta)} K_{\phi(\beta)}^{(1)}(z)=J W_{\xi, \tau} D_{\psi, \phi}^{*} K_{\beta}(z)
$$

$$
\begin{aligned}
& =D_{\psi, \phi} J W_{\xi, \tau} K_{\beta}(z) \\
& =\psi(z)\left(J W_{\xi, \tau} K_{\beta}(z)\right)^{\prime} \circ \phi(z) \\
& =\psi(z) \frac{\sqrt{1-|a|^{2}}(a-\beta \bar{\lambda})}{[1-a \beta+(\beta \bar{\lambda}-a) \phi(z)]^{2}} \\
& =\psi(z) \overline{\xi(\bar{\beta}) \tau(\bar{\beta})} K_{\tau(\bar{\beta})}^{2}(\phi(z))
\end{aligned}
$$

for any $z \in \mathbb{D}$. Since $\overline{\xi(\bar{\beta}) \tau(\bar{\beta})} K_{\tau(\bar{\beta})}^{2}(\phi(z))$ does not vanish on \mathbb{D}, it follows that

$$
\psi(z)=\frac{J W_{\xi, \tau} \overline{\psi(\beta)} K_{\phi(\beta)}^{(1)}(z)}{\overline{\xi(\bar{\beta}) \tau(\bar{\beta})} K_{\tau(\bar{\beta})}^{2}(\phi(z))}
$$

The proof is complete.
It is clear that $D_{\psi, \phi}$ must be identically zero if $\psi \equiv 0$. This case is trivial. From now on, we always assume that ψ is not identically zero. From Proposition 2.2 , when we study the $J W_{\xi, \tau}$-symmetric operator $D_{\psi, \phi}$ on the Hardy space H^{2}, the only nontrivial case is that ψ has a single vanishing point \bar{a}. In the following theorem, we give a detailed characterization for the operator $D_{\psi, \phi}$ to be $J W_{\xi, \tau}$-symmetric on the Hardy space H^{2}.
Theorem 2.3. Let $\xi(z)=\frac{\sqrt{1-|a|^{2}}}{1-\bar{a} z}, \tau(z)=\frac{\lambda(a-z)}{1-\bar{a} z}$, where $a \in \mathbb{D}$ and $|\lambda|=1$ such that $\lambda a=\bar{a}$. Let ϕ be an analytic self-map of \mathbb{D} and $\psi \in H(\mathbb{D})$ be not identically zero such that $D_{\psi, \phi}$ is bounded on H^{2}. Then $D_{\psi, \phi}$ is complex symmetric with respect to the conjugation $J W_{\xi, \tau}$ if and only if

$$
\psi(z)=\frac{\left(1-|a|^{2}\right)^{2} \psi^{\prime}(\bar{a})(z-\bar{a})}{[1-a \phi(\bar{a})+(\bar{\lambda} \phi(\bar{a})-a) z]^{2}}
$$

and

$$
\phi(z)=\phi(\bar{a})+\frac{\left(1-|a|^{2}\right) \phi^{\prime}(\bar{a})(z-\bar{a})}{1-a \phi(\bar{a})+(\bar{\lambda} \phi(\bar{a})-a) z} .
$$

Proof. First, suppose that $D_{\psi, \phi}$ is complex symmetric with respect to the conjugation $J W_{\xi, \tau}$. Then

$$
\begin{equation*}
J W_{\xi, \tau} D_{\psi, \phi}^{*} K_{w}(z)=D_{\psi, \phi} J W_{\xi, \tau} K_{w}(z) \tag{1}
\end{equation*}
$$

for any $z, w \in \mathbb{D}$. It follows from Lemma 2.1 that

$$
\begin{aligned}
J W_{\xi, \tau} D_{\psi, \phi}^{*} K_{w}(z) & =J W_{\xi, \tau} \overline{\psi(w)} K_{\phi(w)}^{(1)}(z) \\
& =J \xi(z) \overline{\psi(w)} K_{\phi(w)}^{(1)}(\tau(z)) \\
& =\overline{\xi(\bar{z})} \psi(w) \overline{K_{\phi(w)}^{(1)}(\tau(\bar{z}))} \\
& =\frac{\sqrt{1-|a|^{2}}}{1-a z} \cdot \frac{\psi(w) \overline{\tau(\bar{z})}}{[1-\phi(w) \overline{\tau(\bar{z})}]^{2}}
\end{aligned}
$$

$$
=\frac{\sqrt{1-|a|^{2}} \psi(w) \bar{\lambda}(\bar{a}-z)}{[1-a z-\bar{\lambda}(\bar{a}-z) \phi(w)]^{2}}
$$

and

$$
\begin{aligned}
D_{\psi, \phi} J W_{\xi, \tau} K_{w}(z) & =D_{\psi, \phi} J \xi(z) K_{w}(\tau(z)) \\
& =\psi(z)\left(\overline{\xi(\bar{z}) K_{w}(\tau(\bar{z}))}\right)^{\prime} \circ \phi(z) \\
& =\psi(z)\left(\frac{\sqrt{1-|a|^{2}}}{1-w \overline{\lambda a}+(w \bar{\lambda}-a) z}\right)^{\prime} \circ \phi(z) \\
& =\left(\frac{\sqrt{1-|a|^{2}}(a-w \bar{\lambda}) \psi(z)}{[1-w \overline{\lambda a}+(w \bar{\lambda}-a) z]^{2}}\right)^{\prime} \circ \phi(z) \\
& =\frac{\sqrt{1-|a|^{2}}(a-w \bar{\lambda}) \psi(z)}{[1-w \overline{\lambda a}+(w \bar{\lambda}-a) \phi(z)]^{2}} .
\end{aligned}
$$

Therefore, we obtain that

$$
\begin{equation*}
\frac{\sqrt{1-|a|^{2}}(a-w \bar{\lambda}) \psi(z)}{[1-w \overline{\lambda a}+(w \bar{\lambda}-a) \phi(z)]^{2}}=\frac{\sqrt{1-|a|^{2}} \psi(w) \bar{\lambda}(\bar{a}-z)}{[1-a z-\bar{\lambda}(\bar{a}-z) \phi(w)]^{2}} \tag{2}
\end{equation*}
$$

for any $z, w \in \mathbb{D}$. From Proposition 2.2, we see that $\psi(\bar{a})=0$. Set $\psi(z)=$ $(z-\bar{a})^{k} g(z)$, where g is analytic on \mathbb{D} with $g(\bar{a}) \neq 0$ and k is a positive integer. Then (2) becomes

$$
\begin{equation*}
\frac{(z-\bar{a})^{k-1} g(z)}{[1-w \overline{\lambda a}+(w \bar{\lambda}-a) \phi(z)]^{2}}=\frac{(w-\bar{a})^{k-1} g(w)}{[1-a z-\bar{\lambda}(\bar{a}-z) \phi(w)]^{2}} \tag{3}
\end{equation*}
$$

for any $z, w \in \mathbb{D}$. If $k>1$, let $w=\bar{a}$ in (3). We obtain that $g \equiv 0$. This contradicts the assumption that $g(\bar{a}) \neq 0$. Therefore, $k=1$ and

$$
\begin{equation*}
\frac{g(z)}{[1-w \overline{\lambda a}+(w \bar{\lambda}-a) \phi(z)]^{2}}=\frac{g(w)}{[1-a z-\bar{\lambda}(\bar{a}-z) \phi(w)]^{2}} \tag{4}
\end{equation*}
$$

for any $z, w \in \mathbb{D}$. Let $w=\bar{a}$ in (4). Noting that $\lambda a=\bar{a}$, we get

$$
g(z)=\frac{\left(1-|a|^{2}\right)^{2} g(\bar{a})}{[1-a \phi(\bar{a})+(\bar{\lambda} \phi(\bar{a})-a) z]^{2}} .
$$

Since $\psi(z)=(z-\bar{a}) g(z)$, we obtain that

$$
\begin{equation*}
\psi(z)=\frac{\left(1-|a|^{2}\right)^{2} \psi^{\prime}(\bar{a})(z-\bar{a})}{[1-a \phi(\bar{a})+(\bar{\lambda} \phi(\bar{a})-a) z]^{2}}, \tag{5}
\end{equation*}
$$

where $\psi^{\prime}(\bar{a})=g(\bar{a}) \neq 0$. (2) and (5) give that

$$
=\begin{aligned}
& \frac{a z-|a|^{2}-\bar{\lambda} w z+a w}{[1-a \phi(\bar{a})+(\bar{\lambda} \phi(\bar{a})-a) z]^{2}[1-a w-\bar{\lambda}(\bar{a}-w) \phi(z)]^{2}} \\
& {[1-a \phi(\bar{a})+(\bar{\lambda} \phi(\bar{a})-a) w]^{2}[1-a z-\bar{\lambda}(\bar{a}-z) \phi(w)]^{2} }
\end{aligned}
$$

for any $z, w \in \mathbb{D}$, which means that

$$
\begin{aligned}
& {[1-a \phi(\bar{a})+(\bar{\lambda} \phi(\bar{a})-a) z]^{2}[1-a w-\bar{\lambda}(\bar{a}-w) \phi(z)]^{2} } \\
= & {[1-a \phi(\bar{a})+(\bar{\lambda} \phi(\bar{a})-a) w]^{2}[1-a z-\bar{\lambda}(\bar{a}-z) \phi(w)]^{2} }
\end{aligned}
$$

for any $z, w \in \mathbb{D}$. By taking the derivative with respect to z, we have that

$$
\begin{aligned}
& {[1-a \phi(\bar{a})+(\bar{\lambda} \phi(\bar{a})-a) z](\bar{\lambda} \phi(\bar{a})-a)[1-a w-\bar{\lambda}(\bar{a}-w) \phi(z)]^{2} } \\
& -[1-a \phi(\bar{a})+(\bar{\lambda} \phi(\bar{a})-a) z]^{2}[1-a w-\bar{\lambda}(\bar{a}-w) \phi(z)] \bar{\lambda}(\bar{a}-w) \phi^{\prime}(z) \\
= & {[1-a \phi(\bar{a})+(\bar{\lambda} \phi(\bar{a})-a) w]^{2}[1-a z-\bar{\lambda}(\bar{a}-z) \phi(w)](\bar{\lambda} \phi(w)-a) . }
\end{aligned}
$$

Letting $z=\bar{a}$, we obtain that

$$
\begin{aligned}
& \left(1-|a|^{2}\right)(\bar{\lambda} \phi(\bar{a})-a)[1-a w-a \phi(\bar{a})+\bar{\lambda} w \phi(\bar{a})]^{2} \\
& -\left(1-|a|^{2}\right)^{2}[1-a w-a \phi(\bar{a})+\bar{\lambda} w \phi(\bar{a})] \bar{\lambda}(\bar{a}-w) \phi^{\prime}(\bar{a}) \\
= & {[1-a \phi(\bar{a})+(\bar{\lambda} \phi(\bar{a})-a) w]^{2}\left(1-|a|^{2}\right)(\bar{\lambda} \phi(w)-a) . }
\end{aligned}
$$

Therefore,

$$
\phi(z)=\phi(\bar{a})+\frac{\left(1-|a|^{2}\right) \phi^{\prime}(\bar{a})(z-\bar{a})}{1-a \phi(\bar{a})+(\bar{\lambda} \phi(\bar{a})-a) z} .
$$

Conversely, assume that

$$
\psi(z)=\frac{\left(1-|a|^{2}\right)^{2} \psi^{\prime}(\bar{a})(z-\bar{a})}{[1-a \phi(\bar{a})+(\bar{\lambda} \phi(\bar{a})-a) z]^{2}}
$$

and

$$
\phi(z)=\phi(\bar{a})+\frac{\left(1-|a|^{2}\right) \phi^{\prime}(\bar{a})(z-\bar{a})}{1-a \phi(\bar{a})+(\bar{\lambda} \phi(\bar{a})-a) z} .
$$

By our hypothesis, $D_{\psi, \phi}$ is bounded on H^{2}. Hence, it is enough to verify that (1) holds for any $z, w \in \mathbb{D}$. Indeed, we have

$$
\begin{aligned}
& J W_{\xi, \tau} D_{\psi, \phi}^{*} K_{w}(z) \\
= & \frac{\sqrt{1-|a|^{2}} \psi(w) \bar{\lambda}(\bar{a}-z)}{[1-a z-\bar{\lambda}(\bar{a}-z) \phi(w)]^{2}} \\
= & \frac{\left(1-|a|^{2}\right)^{5 / 2} \bar{\lambda}(\bar{a}-z) \psi^{\prime}(\bar{a})(w-\bar{a})}{\left\{[1-a z-\bar{\lambda}(\bar{a}-z) \phi(\bar{a})][1-a \phi(\bar{a})+(\bar{\lambda} \phi(\bar{a})-a) w]-\bar{\lambda}(\bar{a}-z)\left(1-|a|^{2}\right) \phi^{\prime}(\bar{a})(w-\bar{a})\right\}^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
& D_{\psi, \phi} J W_{\xi, \tau} K_{w}(z) \\
= & \frac{\sqrt{1-|a|^{2}}(a-w \bar{\lambda}) \psi(z)}{[1-w \overline{\lambda a}+(w \bar{\lambda}-a) \phi(z)]^{2}} \\
= & \frac{\left(1-|a|^{2}\right)^{5 / 2} \bar{\lambda}(\bar{a}-z) \psi^{\prime}(\bar{a})(w-\bar{a})}{\left\{[1-a w-\bar{\lambda}(\bar{a}-w) \phi(\bar{a})][1-a \phi(\bar{a})+(\bar{\lambda} \phi(\bar{a})-a) z]-\bar{\lambda}(\bar{a}-w)\left(1-|a|^{2}\right) \phi^{\prime}(\bar{a})(z-\bar{a})\right\}^{2}} .
\end{aligned}
$$

Since the numerators of $J W_{\xi, \tau} D_{\psi, \phi}^{*} K_{w}(z)$ and $D_{\psi, \phi} J W_{\xi, \tau} K_{w}(z)$ are the same, it is enough to verify their denominators are also the same. Write
$A=[1-a z-\bar{\lambda}(\bar{a}-z) \phi(\bar{a})][1-a \phi(\bar{a})+(\bar{\lambda} \phi(\bar{a})-a) w]-\bar{\lambda}(\bar{a}-z)\left(1-|a|^{2}\right) \phi^{\prime}(\bar{a})(w-\bar{a})$
and
$B=[1-a w-\bar{\lambda}(\bar{a}-w) \phi(\bar{a})][1-a \phi(\bar{a})+(\bar{\lambda} \phi(\bar{a})-a) z]-\bar{\lambda}(\bar{a}-w)\left(1-|a|^{2}\right) \phi^{\prime}(\bar{a})(z-\bar{a})$.
By a simple calculation, we obtain that

$$
\begin{aligned}
A= & {[1-a z-\bar{\lambda}(\bar{a}-z) \phi(\bar{a})][1-a w-(a-\bar{\lambda} w) \phi(\bar{a})]-(a-\bar{\lambda} z)\left(1-|a|^{2}\right) \phi^{\prime}(\bar{a})(w-\bar{a}) } \\
= & (1-a z)(1-a w)-(1-a z)(a-\bar{\lambda} w) \phi(\bar{a})-(1-a w)(a-\bar{\lambda} z) \phi(\bar{a}) \\
& +(a-\bar{\lambda} z)(a-\bar{\lambda} w) \phi(\bar{a})+\left(1-|a|^{2}\right) \phi^{\prime}(\bar{a}) \bar{\lambda}(\bar{a}-w)(\bar{a}-z)=B .
\end{aligned}
$$

The proof is complete.
Next, we give a sufficient and necessary condition for $J W_{\xi, \tau}$-symmetric weighted composition-differentiation operator $D_{\psi, \phi}$ to be normal under the assumption that $\phi(\bar{a})=\bar{a}$.

Theorem 2.4. Let $\xi(z)=\frac{\sqrt{1-|a|^{2}}}{1-\bar{a} z}, \tau(z)=\frac{\lambda(a-z)}{1-\bar{a} z}$, where $a \in \mathbb{D}$ and $|\lambda|=1$ such that $\lambda a=\bar{a}$. Let $\psi \in H(\mathbb{D})$ be not identically zero and ϕ be an analytic self-map of \mathbb{D} with $\phi(\bar{a})=\bar{a}$. If $D_{\psi, \phi}$ is complex symmetric with respect to the conjugation $J W_{\xi, \tau}$ on H^{2}, then $D_{\psi, \phi}$ is normal if and only if $\phi(z)=\phi^{\prime}(0) z$ and $\psi(z)=\phi^{\prime}(0) z$.

Proof. Since $D_{\psi, \phi}$ is complex symmetric with respect to the conjugation $J W_{\xi, \tau}$ and $\phi(\bar{a})=\bar{a}$, Theorem 2.3 yields that

$$
\begin{equation*}
\phi(z)=\bar{a}+\phi^{\prime}(\bar{a})(z-\bar{a}) \text { and } \psi(z)=\psi^{\prime}(\bar{a})(z-\bar{a}) . \tag{6}
\end{equation*}
$$

For each $z, w \in \mathbb{D}$, we obtain that

$$
\begin{aligned}
D_{\psi, \phi}^{*} D_{\psi, \phi} K_{w}(z) & =\bar{w} D_{\psi, \phi}^{*} \frac{\psi(z)}{(1-\bar{w} \phi(z))^{2}} \\
& =\bar{w} D_{\psi, \phi}^{*} \frac{\psi^{\prime}(\bar{a})(z-\bar{a})}{\left[1-\bar{w}\left(\bar{a}+\phi^{\prime}(\bar{a})(z-\bar{a})\right)\right]^{2}} \\
& =\bar{w} \psi^{\prime}(\bar{a}) D_{\psi, \phi}^{*} \frac{(z-\bar{a})}{\left[1-\overline{w a}-\bar{w} \phi^{\prime}(\bar{a})(z-\bar{a})\right]^{2}} \\
& =\frac{\bar{w} \psi^{\prime}(\bar{a})}{(1-\overline{w a})^{2}} D_{\psi, \phi}^{*} K_{\sigma(w)}^{(1)}(z-\bar{a}),
\end{aligned}
$$

where $\sigma(w)=\frac{w \overline{\phi^{\prime}(\bar{a})}}{1-w a}$. Lemma 2.1 gives that

$$
\begin{aligned}
& D_{\psi, \phi}^{*} D_{\psi, \phi} K_{w}(z) \\
= & \frac{\bar{w} \psi^{\prime}(\bar{a})}{(1-\overline{w a})^{2}}\left(\overline{\psi^{\prime}(\sigma(w))} K_{\phi(\sigma(w))}^{(1)}(z-\bar{a})+\overline{\psi(\sigma(w)) \phi^{\prime}(\sigma(w))} K_{\phi(\sigma(w))}^{(2)}(z-\bar{a})\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\bar{w}\left|\psi^{\prime}(\bar{a})\right|^{2}}{(1-\overline{w a})^{2}} \cdot\left(\frac{z-\bar{a}}{[1-\overline{\phi(\sigma(w))}(z-\bar{a})]^{2}}+\frac{2 \overline{(\sigma(w)-\bar{a}) \phi^{\prime}(\bar{a})}(z-\bar{a})^{2}}{[1-\overline{\phi(\sigma(w))}(z-\bar{a})]^{3}}\right) \\
& =\frac{\bar{w}\left|\psi^{\prime}(\bar{a})\right|^{2}}{(1-\overline{w a})^{2}} \cdot \frac{\left[1-\overline{\phi(\sigma(w))(z-\bar{a})](z-\bar{a})+2 \overline{(\sigma(w)-\bar{a}) \phi^{\prime}(\bar{a})}(z-\bar{a})^{2}}\right.}{[1-\overline{\phi(\sigma(w))}(z-\bar{a})]^{3}} \\
& =\bar{w}^{\left(\left.\psi^{\prime}(\bar{a})\right|^{2} \cdot \frac{(1-\overline{w a})(z-\bar{a})+\left[\bar{w}\left|\phi^{\prime}(\bar{a})\right|^{2}+\left(|a|^{2} \bar{w}-a\right) \overline{\phi^{\prime}(\bar{a})}+|a|^{2} \bar{w}-a\right](z-\bar{a})^{2}}{\left[1-\overline{w a}-\left[\left(a-a \overline{\phi^{\prime}(\bar{a})}\right)(1-\overline{w a})+\bar{w} \mid \phi^{\prime}\left(\left.\bar{a}\right|^{2}\right)\right](z-\bar{a})\right]^{3}},\right.}
\end{aligned}
$$

and

$$
\begin{aligned}
& D_{\psi, \phi} D_{\psi, \phi}^{*} K_{w}(z) \\
= & D_{\psi, \phi} \overline{\psi(w)} K_{\phi(w)}^{(1)}(z) \\
= & D_{\psi, \phi} \overline{\psi(w)} \frac{z}{(1-\overline{\phi(w)})^{2}} \\
= & \psi(z) \overline{\psi(w)}\left(\frac{1}{(1-\overline{\phi(w)} \phi(z))^{2}}+\frac{2 \overline{\phi(w)} \phi(z)}{(1-\overline{\phi(w)} \phi(z))^{3}}\right) \\
= & \psi(z) \overline{\psi(w)} \cdot \frac{1+\overline{\phi(w)} \phi(z)}{(1-\overline{\phi(w)} \phi(z))^{3}} \\
= & \left|\psi^{\prime}(\bar{a})\right|^{2}(z-\bar{a})(\bar{w}-a) \\
& \times \frac{1+|a|^{2}+\overline{a \phi^{\prime}(\bar{a})}(\bar{w}-a)+\left[a \phi^{\prime}(\bar{a})+\left|\phi^{\prime}(\bar{a})\right|^{2}(\bar{w}-a)\right](z-\bar{a})}{\left\{1-|a|^{2}-\overline{a \phi^{\prime}(\bar{a})}(\bar{w}-a)-\left[a \phi^{\prime}(\bar{a})+\left|\phi^{\prime}(\bar{a})\right|^{2}(\bar{w}-a)\right](z-\bar{a})\right\}^{3}} .
\end{aligned}
$$

Suppose that $D_{\psi, \phi}$ is normal, then for any $z, w \in \mathbb{D}$, we have that

$$
D_{\psi, \phi}^{*} D_{\psi, \phi} K_{w}(z)=D_{\psi, \phi} D_{\psi, \phi}^{*} K_{w}(z)
$$

which implies that

$$
\begin{aligned}
& \bar{w} \cdot \frac{1-\overline{w a}+\left[\bar{w}\left|\phi^{\prime}(\bar{a})\right|^{2}+\left(|a|^{2} \bar{w}-a\right) \overline{\phi^{\prime}(\bar{a})}+|a|^{2} \bar{w}-a\right](z-\bar{a})}{\left[1-\overline{w a}-\left(\left(a-a \overline{\phi^{\prime}(\bar{a})}\right)(1-\overline{w a})+\bar{w} \mid \phi^{\prime}\left(\left.\bar{a}\right|^{2}\right)\right)(z-\bar{a})\right]^{3}} \\
= & (\bar{w}-a) \frac{1+|a|^{2}+\overline{a \phi^{\prime}(\bar{a})}(\bar{w}-a)+\left[a \phi^{\prime}(\bar{a})+\left|\phi^{\prime}(\bar{a})\right|^{2}(\bar{w}-a)\right](z-\bar{a})}{\left\{1-|a|^{2}-\overline{a \phi^{\prime}(\bar{a})}(\bar{w}-a)-\left[a \phi^{\prime}(\bar{a})+\left|\phi^{\prime}(\bar{a})\right|^{2}(\bar{w}-a)\right](z-\bar{a})\right\}^{3}}
\end{aligned}
$$

for any $z, w \in \mathbb{D}$. Thus the constant term must be 0 ; that is
$\bar{w}(1-\overline{w a})\left[1-|a|^{2}-\overline{a \phi^{\prime}(\bar{a})}(\bar{w}-a)\right]^{3}=(1-\overline{w a})^{3}(\bar{w}-a)\left[1+|a|^{2}+\overline{a \phi^{\prime}(\bar{a})}(\bar{w}-a)\right]$
for any $w \in \mathbb{D}$. Let $w=\bar{a}$. We obtain that $a\left(1-|a|^{2}\right)^{4}=0$. Hence, $a=0$, $\phi(z)=\phi^{\prime}(0) z$ and $\psi(z)=\psi^{\prime}(0) z$.

Conversely, suppose that $\phi(z)=z$ and $\psi(z)=\phi^{\prime}(0) z$. We see that $D_{\psi, \phi}$ is normal from Proposition 2.7 in [11].

The next theorem gives a sufficient and necessary condition for $J W_{\xi, \tau^{-}}$ symmetric weighted composition-differentiation operator $D_{\psi, \phi}$ to be normal if $\phi^{\prime}(\bar{a})=0$.

Theorem 2.5. Let $\xi(z)=\frac{\sqrt{1-|a|^{2}}}{1-\bar{a} z}, \tau(z)=\frac{\lambda(a-z)}{1-\bar{a} z}$, where $a \in \mathbb{D}$ and $|\lambda|=1$ such that $\lambda a=\bar{a}$. Let $\psi \in H(\mathbb{D})$ be not identically zero and ϕ be an analytic self-map of \mathbb{D} with $\phi^{\prime}(\bar{a})=0$. If $D_{\psi, \phi}$ is complex symmetric with respect to the conjugation $J W_{\xi, \tau}$, then $D_{\psi, \phi}$ is normal if and only if $a=0$ and $-\overline{\phi(0)}=$ $\bar{\lambda} \phi(0)$.
Proof. Since $D_{\psi, \phi}$ is complex symmetric with respect to the conjugation $J W_{\xi, \tau}$ and $\phi^{\prime}(\bar{a})=0$, Theorem 2.3 yields that

$$
\begin{equation*}
\phi(z)=\phi(\bar{a}) \text { and } \psi(z)=\frac{\left(1-|a|^{2}\right)^{2} \psi^{\prime}(\bar{a})(z-\bar{a})}{[1-a \phi(\bar{a})+(\bar{\lambda} \phi(\bar{a})-a) z]^{2}} \tag{7}
\end{equation*}
$$

For each $z, w \in \mathbb{D}$, we obtain that

$$
\begin{aligned}
D_{\psi, \phi}^{*} D_{\psi, \phi} K_{w}(z) & =\bar{w} D_{\psi, \phi}^{*} \frac{\psi(z)}{(1-\bar{w} \phi(z))^{2}} \\
& =\frac{\bar{w}}{(1-\bar{w} \phi(\bar{a}))^{2}} D_{\psi, \phi}^{*} \frac{\left(1-|a|^{2}\right)^{2} \psi^{\prime}(\bar{a})(z-\bar{a})}{[1-a \phi(\bar{a})+(\bar{\lambda} \phi(\bar{a})-a) z]^{2}} \\
& =\frac{\bar{w}\left(1-|a|^{2}\right)^{2} \psi^{\prime}(\bar{a})}{(1-\bar{w} \phi(\bar{a}))^{2}} D_{\psi, \phi}^{*} \frac{z-\bar{a}}{\left[1-|a|^{2}+(\bar{\lambda} \phi(\bar{a})-a)(z-\bar{a})\right]^{2}} \\
& =\frac{\bar{w} \psi^{\prime}(\bar{a})}{(1-\bar{w} \phi(\bar{a}))^{2}} D_{\psi, \phi}^{*} K_{\xi}^{(1)}(z-\bar{a}) \\
& =\frac{\bar{w} \psi^{\prime}(\bar{a})}{(1-\bar{w} \phi(\bar{a}))^{2}} \cdot \overline{\psi^{\prime}(\xi)} K_{\phi(\bar{a})}^{(1)}(z-\bar{a})
\end{aligned}
$$

where

$$
\xi=\frac{\bar{a}-\lambda \overline{\phi(\bar{a})}}{1-|a|^{2}}, \quad K_{\phi(\bar{a})}^{(1)}(z-\bar{a})=\frac{z-\bar{a}}{\left[1+\overline{a \phi(\bar{a})}-\overline{\phi(\bar{a}) z]^{2}}\right.}
$$

and

$$
\psi^{\prime}(\xi)=\frac{\left(1-|a|^{2}\right)^{2} \psi^{\prime}(\bar{a})\left[1+a \phi(\bar{a})-2|a|^{2}-(\bar{\lambda} \phi(\bar{a})-a) \xi\right]}{[1-a \phi(\bar{a})+(\bar{\lambda} \phi(\bar{a})-a) \xi]^{3}}
$$

Therefore,

$$
\begin{aligned}
& D_{\psi, \phi}^{*} D_{\psi, \phi} K_{w}(z) \\
= & \frac{\left(1-|a|^{2}\right)^{4}\left|\psi^{\prime}(\bar{a})\right|^{2} \bar{w}(z-\bar{a})\left[1-2|a|^{2}+2|a|^{4}-|a|^{2} a \phi(\bar{a})+|\phi(\bar{a})|^{2}-\overline{a \phi(\bar{a})}\right]}{(1-\bar{w} \phi(\bar{a}))^{2}[1+\overline{a \phi(\bar{a})}-\overline{\phi(\bar{a}) z}]^{2}\left[1-2|a|^{2}+\overline{a \phi(\bar{a})}-|\phi(\bar{a})|^{2}+a|a|^{2} \phi(\bar{a})\right]^{3}} .
\end{aligned}
$$

For each $z, w \in \mathbb{D}$, we have that

$$
\left.\begin{array}{rl}
& D_{\psi, \phi} D_{\psi, \phi}^{*} K_{w}(z) \\
= & D_{\psi, \phi} \overline{\psi(w)} K_{\phi(\bar{a})}^{(1)}(z) \\
= & D_{\psi, \phi} \overline{\psi(w)} \bar{z} \\
= & \psi(z) \overline{\psi(w)}\left(\frac{1}{(1-\overline{\phi(\bar{a})} z)^{2}}\right. \\
(1-\overline{\phi(\bar{a})} \phi(z))^{2}
\end{array} \frac{2 \overline{\phi(\bar{a})} \phi(z)}{(1-\overline{\phi(\bar{a})} \phi(z))^{3}}\right), ~ l
$$

$$
\begin{aligned}
& =\psi(z) \overline{\psi(w)} \cdot \frac{1+|\phi(\bar{a})|^{2}}{\left(1-|\phi(\bar{a})|^{2}\right)^{3}} \\
& =\frac{\left(1-|a|^{2}\right)^{4}\left|\psi^{\prime}(\bar{a})\right|^{2}(\bar{w}-a)(z-\bar{a})\left(1+|\phi(\bar{a})|^{2}\right)}{[1-\overline{a \phi(\bar{a})}+(\lambda \overline{\phi(\bar{a})}-\bar{a}) \bar{w}]^{2}[1-a \phi(\bar{a})+(\bar{\lambda} \phi(\bar{a})-a) z]^{2}\left(1-|\phi(\bar{a})|^{2}\right)^{3}} .
\end{aligned}
$$

Suppose that $D_{\psi, \phi}$ is normal. Then for any $z, w \in \mathbb{D}$, we have that

$$
D_{\psi, \phi}^{*} D_{\psi, \phi} K_{w}(z)=D_{\psi, \phi} D_{\psi, \phi}^{*} K_{w}(z)
$$

which implies that

$$
\text { (8) } \begin{aligned}
& \frac{\bar{w}(z-\bar{a})\left[1-2|a|^{2}+2|a|^{4}-|a|^{2} a \phi(\bar{a})+|\phi(\bar{a})|^{2}-\overline{a \phi(\bar{a})}\right]}{(1-\bar{w} \phi(\bar{a}))^{2}\left[1+\overline{a \phi(\bar{a})}-\overline{\phi(\bar{a}) z]^{2}}\left[1-2|a|^{2}+\overline{a \phi(\bar{a})}-|\phi(\bar{a})|^{2}+a|a|^{2} \phi(\bar{a})\right]^{3}\right.} \\
= & \frac{(\bar{w}-a)(z-\bar{a})\left(1+|\phi(\bar{a})|^{2}\right)}{[1-\overline{a \phi(\bar{a})}+(\lambda \overline{\phi(\bar{a})}-\bar{a}) \bar{w}]^{2}[1-a \phi(\bar{a})+(\bar{\lambda} \phi(\bar{a})-a) z]^{2}\left(1-|\phi(\bar{a})|^{2}\right)^{3}}
\end{aligned}
$$

for any $z, w \in \mathbb{D}$. Letting $w=0$, we obtain that $a(z-\bar{a})\left(1+|\phi(\bar{a})|^{2}\right)=0$ for any $z \in \mathbb{D}$. Thus, $a=0$. Then by (8) we get

$$
\begin{aligned}
& \frac{\bar{w} z\left(1+|\phi(\bar{a})|^{2}\right)}{(1-\phi(0) \bar{w})^{2}(1-\overline{\phi(0)} z)^{2}\left(1-|\phi(0)|^{2}\right)^{3}} \\
= & \frac{\bar{w} z\left(1+|\phi(\bar{a})|^{2}\right)}{(1+\lambda \overline{\phi(0)} \bar{w})^{2}(1+\bar{\lambda} \phi(0) z)^{2}\left(1-|\phi(0)|^{2}\right)^{3}}
\end{aligned}
$$

for any $z, w \in \mathbb{D}$. This implies that

$$
\begin{equation*}
(1-\phi(0) \bar{w})^{2}(1-\overline{\phi(0)} z)^{2}=(1+\lambda \overline{\phi(0)} \bar{w})^{2}(1+\bar{\lambda} \phi(0) z)^{2} \tag{9}
\end{equation*}
$$

for any $z, w \in \mathbb{D}$. Letting $w=0$ in (9), we see that

$$
(1-\overline{\phi(0)} z)^{2}=(1+\bar{\lambda} \phi(0) z)^{2}
$$

for any $z \in \mathbb{D}$. By taking the derivative with respect to z, we have

$$
\begin{equation*}
2(1-\overline{\phi(0)} z)(-\overline{\phi(0)})=2 \bar{\lambda} \phi(0)(1+\bar{\lambda} \phi(0) z) \tag{10}
\end{equation*}
$$

for any $z \in \mathbb{D}$. Considering $z=0$, we get that $-\overline{\phi(0)}=\bar{\lambda} \phi(0)$.
Conversely, assume that $a=0$ and $-\overline{\phi(0)}=\bar{\lambda} \phi(0)$. The desired result follows from a direct computation.

3. Spectral properties

In this section, we completely characterize the spectral properties of the compact $J W_{\xi, \tau}$-symmetric weighted composition-differentiation operator $D_{\psi, \phi}$ satisfying the condition that $\phi(\bar{a})=0$ in Theorem 2.4 and $\phi^{\prime}(\bar{a})=0$ in Theorem 2.5 , respectively. We use $\sigma(T)$ to denote the spectrum of the operator $T \in$ $\mathcal{B}(H)$.

Theorem 3.1. Let $\xi(z)=\frac{\sqrt{1-|a|^{2}}}{1-\bar{a} z}, \tau(z)=\frac{\lambda(a-z)}{1-\bar{a} z}$, where $a \in \mathbb{D}$ and $|\lambda|=1$ such that $\lambda a=\bar{a}$. Let $n \in \mathbb{N}^{+}, \psi \in H(\mathbb{D})$ be not identically zero and ϕ be a nonconstant analytic self-map of \mathbb{D} with $\phi(\bar{a})=\bar{a}$ such that $D_{\psi, \phi}$ is compact on H^{2}. If $D_{\psi, \phi}$ is complex symmetric with respect to the conjugation $J W_{\xi, \tau}$, then

$$
\sigma\left(D_{\psi, \phi}\right)=\{0\} \cup\left\{n \psi^{\prime}(\bar{a}) \phi^{\prime(n-1)}(\bar{a}), n \in \mathbb{N}^{+}\right\}
$$

Moreover, $f(z)=(z-\bar{a})^{n}$ is an eigenvector of $D_{\psi, \phi}$ with respect to the eigenvalue $n \psi^{\prime}(\bar{a}) \phi^{\prime(n-1)}(\bar{a})$ for each $n \in \mathbb{N}^{+}$.
Proof. Assume that $D_{\psi, \phi}$ is complex symmetric with respect to the conjugation $J W_{\xi, \tau}$ and $\phi(\bar{a})=\bar{a}$. Theorem 2.3 gives that

$$
\begin{equation*}
\phi(z)=\bar{a}+\phi^{\prime}(\bar{a})(z-\bar{a}) \text { and } \psi(z)=\psi^{\prime}(\bar{a})(z-\bar{a}) . \tag{11}
\end{equation*}
$$

For each nonzero $\gamma \in \sigma\left(D_{\psi, \phi}\right)$, since $D_{\psi, \phi}$ is compact on H^{2}, there is a nonzero element $f \in H^{2}$ such that $D_{\psi, \phi} f=\gamma f$; that is,

$$
\psi(z) f^{\prime}(\phi(z))=\gamma f(z), \quad z \in \mathbb{D}
$$

Write $f(z)=\sum_{n=0}^{\infty} a_{n}(z-\bar{a})^{n}$. Then for any $z \in \mathbb{D}$,

$$
\sum_{n=0}^{\infty} \psi^{\prime}(\bar{a}) n a_{n} \phi^{\prime(n-1)}(\bar{a})(z-\bar{a})^{n}=\sum_{n=0}^{\infty} \gamma a_{n}(z-\bar{a})^{n}
$$

Therefore,

$$
\psi^{\prime}(\bar{a}) n a_{n} \phi^{\prime(n-1)}(\bar{a})=\gamma a_{n} .
$$

Since $f \not \equiv 0$, there is $n_{0} \in \mathbb{N}^{+}$such that $a_{n_{0}} \neq 0$. Hence, $\gamma=n_{0} \psi^{\prime}(\bar{a}) \phi^{\prime\left(n_{0}-1\right)}(\bar{a})$. If there is another $n_{1} \in \mathbb{N}^{+}$such that $n_{1} \neq 0$, then $\gamma=n_{1} \psi^{\prime}(\bar{a}) \phi^{\left(n_{1}-1\right)}(\bar{a})$. Since ϕ is nonconstant, we obtain that $\phi^{\prime}(\bar{a}) \neq 0$. Write $\phi^{\prime}(\bar{a})=r e^{i \theta}$, where $\theta \in[0,2 \pi], r>0$. Then

$$
e^{i\left(n_{0}-n_{1}\right) \theta}=\frac{n_{1} r^{n_{1}-n_{0}}}{n_{0}}
$$

which implies that $n_{0}=n_{1}$. Thus, $f(z)=a_{n_{0}}(z-\bar{a})^{n_{0}}$.
Conversely, if there is $n_{0} \in \mathbb{N}^{+}$such that $\gamma=n_{0} \psi^{\prime}(\bar{a}) \phi^{\prime}\left(n_{0}-1\right)(\bar{a})$. Set $f(z)=$ $(z-\bar{a})^{n_{0}}$. By a simple calculation, we obtain that $D_{\psi, \phi} f=\gamma f$.

Theorem 3.2. Let $\xi(z)=\frac{\sqrt{1-|a|^{2}}}{1-\bar{a} z}, \tau(z)=\frac{\lambda(a-z)}{1-\bar{a} z}$, where $a \in \mathbb{D}$ and $|\lambda|=1$ such that $\lambda a=\bar{a}$. Let $n \in \mathbb{N}^{+}, \psi \in H(\mathbb{D})$ be not identically zero and ϕ be a nonconstant analytic self-map of \mathbb{D} with $\phi^{\prime}(\bar{a})=0$ such that $D_{\psi, \phi}$ is compact on H^{2}. If $D_{\psi, \phi}$ is complex symmetric with respect to the conjugation $J W_{\xi, \tau}$, then

$$
\sigma\left(D_{\psi, \phi}\right)= \begin{cases}\{0\} \cup\left\{\psi^{\prime}(\phi(\bar{a}))\right\}, & \text { when } \psi^{\prime}(\phi(\bar{a})) \neq 0 \tag{12}\\ \{0\}, & \text { when } \psi^{\prime}(\phi(\bar{a}))=0\end{cases}
$$

Moreover, if $\psi^{\prime}(\phi(\bar{a})) \neq 0$, then ψ is an eigenvector of $D_{\psi, \phi}$ with respect to the eigenvalue $\psi^{\prime}(\phi(\bar{a}))$.

Proof. Assume that $D_{\psi, \phi}$ is complex symmetric with respect to the conjugation $J W_{\xi, \tau}$ and $\phi^{\prime}(\bar{a})=0$. Theorem 2.3 yields that

$$
\begin{equation*}
\phi(z)=\phi(\bar{a}) \text { and } \psi(z)=\frac{\left(1-|a|^{2}\right)^{2} \psi^{\prime}(\bar{a})(z-\bar{a})}{[1-a \phi(\bar{a})+(\bar{\lambda} \phi(\bar{a})-a) z]^{2}} . \tag{13}
\end{equation*}
$$

For each nonzero $\gamma \in D_{\psi, \phi}$, since $D_{\psi, \phi}$ is compact on H^{2}, there is a nonzero element $f \in H^{2}$ such that $D_{\psi, \phi} f=\gamma f$; that is,

$$
\psi(z) f^{\prime}(\phi(z))=\gamma f(z), \quad z \in \mathbb{D}
$$

Since $\phi(z)=\phi(\bar{a})$, we have $\psi(z) f^{\prime}(\phi(\bar{a}))=\gamma f(z)$ for any $z \in \mathbb{D}$. This means that $f^{\prime}(\phi(\bar{a})) \neq 0$ and $\psi^{\prime}(z) f^{\prime}(\phi(\bar{a}))=\gamma f^{\prime}(z)$ for any $z \in \mathbb{D}$. Considering $z=\phi(\bar{a})$, we have that $\gamma=\psi^{\prime}(\phi(\bar{a}))$. When $\psi^{\prime}(\phi(\bar{a}))=0$, this contradicts $\gamma \neq 0$. In this case, we obtain that $\sigma\left(D_{\psi, \phi}\right)=\{0\}$. When $\psi^{\prime}(\phi(\bar{a})) \neq 0$, it follows that for any $z \in \mathbb{D}$,

$$
D_{\psi, \phi} \psi(z)=\psi(z) \psi^{\prime}(\phi(z))=\psi(z) \psi^{\prime}(\phi(\bar{a})) .
$$

In this case, $\sigma\left(D_{\psi, \phi}\right)=\{0\} \cup \psi^{\prime}(\phi(\bar{a}))$.
Acknowledgments. The authors would like to thank the referee for detailed comments that lead to improve the paper.

References

[1] C. C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC, Boca Raton, FL, 1995.
[2] M. Fatehi, Complex symmetric weighted composition operators, Complex Var. Elliptic Equ. 64 (2019), no. 4, 710-720. https://doi.org/10.1080/17476933.2018.1498087
[3] M. Fatehi and C. N. B. Hammond, Composition-differentiation operators on the Hardy space, Proc. Amer. Math. Soc. 148 (2020), no. 7, 2893-2900. https://doi.org/10.1090/ proc/14898
[4] M. Fatehi and C. N. B. Hammond, Normality and self-adjointness of weighted composition-differentiation operators, Complex Anal. Oper. Theory 15 (2021), no. 1, Paper No. 9, 13 pp. https://doi.org/10.1007/s11785-020-01057-4
[5] Y.-X. Gao and Z.-H. Zhou, Complex symmetric composition operators induced by linear fractional maps, Indiana Univ. Math. J. 69 (2020), no. 2, 367-384. https://doi.org/ 10.1512/iumj.2020.69.7622
[6] S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006), no. 3, 1285-1315. https://doi.org/10.1090/S0002-9947-05-03742-6
[7] S. R. Garcia and M. Putinar, Complex symmetric operators and applications. II, Trans. Amer. Math. Soc. 359 (2007), no. 8, 3913-3931. https://doi.org/10.1090/S0002-9947-07-04213-4
[8] S. R. Garcia and W. R. Wogen, Complex symmetric partial isometries, J. Funct. Anal. 257 (2009), no. 4, 1251-1260. https://doi.org/10.1016/j.jfa.2009.04.005
[9] S. R. Garcia and W. R. Wogen, Some new classes of complex symmetric operators, Trans. Amer. Math. Soc. 362 (2010), no. 11, 6065-6077. https://doi.org/10.1090/ S0002-9947-2010-05068-8
[10] A. Gupta and A. Malhotra, Complex symmetric weighted composition operators on the space $\mathcal{H}_{1}^{2}(\mathbb{D})$, Complex Var. Elliptic Equ. 65 (2020), no. 9, 1488-1500. https://doi. org/10.1080/17476933.2019.1664483
[11] K. Han and M. Wang, Weighted composition-differentiation operators on the Hardy space, Banach J. Math. Anal. 15 (2021), no. 3, Paper No. 44, 18 pp. https://doi.org/ 10.1007/s43037-021-00131-z
[12] K. Han and M. Wang, Weighted composition-differentiation operators on the Bergman space, Complex Anal. Oper. Theory 15 (2021), no. 5, Paper No. 89, 17 pp. https: //doi.org/10.1007/s11785-021-01116-4
[13] C. Jiang, S.-A. Han, and Z.-H. Zhou, Complex symmetric weighted composition operators on the Hardy space, Czechoslovak Math. J. 70(145) (2020), no. 3, 817-831. https://doi.org/10.21136/CMJ. 2020.0555-18
[14] S. Jung, Y. Kim, E. Ko, and J. E. Lee, Complex symmetric weighted composition operators on $H^{2}(\mathbb{D})$, J. Funct. Anal. 267 (2014), no. 2, 323-351. https://doi.org/10.1016/ j.jfa.2014.04.004
[15] R. Lim and L. H. Khôi, Complex symmetric weighted composition operators on $\mathcal{H}_{\gamma}(\mathbb{D})$, J. Math. Anal. Appl. 464 (2018), no. 1, 101-118. https://doi.org/10.1016/j.jmaa. 2018.03.071
[16] J. Liu, S. Ponnusamy, and H. Xie, Complex symmetric weighted compositiondifferentiation operators, Linear Multilinear Algebra 71 (2023), no. 5, 737-755. https: //doi.org/10.1080/03081087.2022.2043816
[17] S. K. Narayan, D. Sievewright, and D. A. Thompson, Complex symmetric composition operators on H^{2}, J. Math. Anal. Appl. 443 (2016), no. 1, 625-630. https://doi.org/ 10.1016/j.jmaa.2016.05.046
[18] S. K. Narayan, D. Sievewright, and M. Tjani, Complex symmetric composition operators on weighted Hardy spaces, Proc. Amer. Math. Soc. 148 (2020), no. 5, 2117-2127. https: //doi.org/10.1090/proc/14909
[19] D. Thompson, T. McClatchey, and C. Holleman, Binormal, complex symmetric operators, Linear Multilinear Algebra 69 (2021), no. 9, 1705-1715. https://doi.org/10. 1080/03081087.2019.1635982
[20] X. Yao, Complex symmetric composition operators on a Hilbert space of Dirichlet series, J. Math. Anal. Appl. 452 (2017), no. 2, 1413-1419. https://doi.org/10.1016/j.jmaa. 2017.03.076

Lian Hu
Department of Mathematics
Shantou University
Shantou, 515063, Guangdong, P. R. China
Email address: hl152808@163.com

Songxiao Li

Department of Mathematics
Shantou University
Shantou, 515063, Guangdong, P. R. China
Email address: jyulsx@163.com

Rong Yang

Institute of Fundamental and Frontier Sciences
University of Electronic Science and Technology of China
610054, Chengdu, Sichuan, P. R. China
Email address: yangrong071428@163.com

[^0]: Received March 28, 2022; Revised January 30, 2023; Accepted June 9, 2023.
 2020 Mathematics Subject Classification. Primary 30H10, 47B33.
 Key words and phrases. Hardy space, weighted composition-differentiation operator, complex symmetric, spectrum.

 This work was supported by Guangdong Basic and Applied Basic Research Foundation (nos. 2022A1515010317, 2023A1515010614).

