• Title/Summary/Keyword: normal operator

Search Result 282, Processing Time 0.03 seconds

THE GENERALIZED NORMAL STATE SPACE AND UNITAL NORMAL COMPLETELY POSITIVE MAP

  • Sa Ge Lee
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.237-257
    • /
    • 1998
  • By introducing the notion of a generalized normal state space, we give a necessary and sufficient condition for that there exists a unital normal completely map from a von Neumann algebra into another, in terms of their generalized normal state spaces.

  • PDF

Real Hypersurfaces in Complex Two-plane Grassmannians with F-parallel Normal Jacobi Operator

  • Jeong, Im-Soon;Suh, Young-Jin
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.4
    • /
    • pp.395-410
    • /
    • 2011
  • In this paper we give a non-existence theorem for Hopf hypersurfaces M in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$ whose normal Jacobi operator $\bar{R}_N$ is parallel on the distribution F defined by $F=[{\xi}]{\cup}D^{\bot}$, where [${\xi}$] = Span{${\xi}$}, $D^{\bot}$ = Span {${\xi}_1$, ${\xi}_2$, ${\xi}_3$} and $T_xM=D{\oplus}D^{\bot}$, $x{\in}M$.

GENERAL NONLINEAR VARIATIONAL INCLUSIONS WITH H-MONOTONE OPERATOR IN HILBERT SPACES

  • Liu, Zeqing;Zheng, Pingping;Cai, Tao;Kang, Shin-Min
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.263-274
    • /
    • 2010
  • In this paper, a new class of general nonlinear variational inclusions involving H-monotone is introduced and studied in Hilbert spaces. By applying the resolvent operator associated with H-monotone, we prove the existence and uniqueness theorems of solution for the general nonlinear variational inclusion, construct an iterative algorithm for computing approximation solution of the general nonlinear variational inclusion and discuss the convergence of the iterative sequence generated by the algorithm. The results presented in this paper improve and extend many known results in recent literatures.

Finite Operators and Weyl Type Theorems for Quasi-*-n-Paranormal Operators

  • ZUO, FEI;YAN, WEI
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.4
    • /
    • pp.885-892
    • /
    • 2015
  • In this paper, we mainly obtain the following assertions: (1) If T is a quasi-*-n-paranormal operator, then T is finite and simply polaroid. (2) If T or $T^*$ is a quasi-*-n-paranormal operator, then Weyl's theorem holds for f(T), where f is an analytic function on ${\sigma}(T)$ and is not constant on each connected component of the open set U containing ${\sigma}(T)$. (3) If E is the Riesz idempotent for a nonzero isolated point ${\lambda}$ of the spectrum of a quasi-*-n-paranormal operator, then E is self-adjoint and $EH=N(T-{\lambda})=N(T-{\lambda})^*$.

STRUCTURAL AND SPECTRAL PROPERTIES OF k-QUASI-*-PARANORMAL OPERATORS

  • ZUO, FEI;ZUO, HONGLIANG
    • Korean Journal of Mathematics
    • /
    • v.23 no.2
    • /
    • pp.249-257
    • /
    • 2015
  • For a positive integer k, an operator T is said to be k-quasi-*-paranormal if ${\parallel}T^{k+2}x{\parallel}{\parallel}T^kx{\parallel}{\geq}{\parallel}T^*T^kx{\parallel}^2$ for all x $\in$ H, which is a generalization of *-paranormal operator. In this paper, we give a necessary and sufficient condition for T to be a k-quasi-*-paranormal operator. We also prove that the spectrum is continuous on the class of all k-quasi-*-paranormal operators.

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 IN A COMPLEX SPACE FORM IN TERMS OF THE STRUCTURE JACOBI OPERATOR

  • Ki, U-Hang;Kurihara, Hiroyuki
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.229-257
    • /
    • 2022
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (𝜙, 𝜉, 𝜂, g) in a complex space form Mn+1(c), c ≠ 0. We denote by A and R𝜉 the shape operator in the direction of distinguished normal vector field and the structure Jacobi operator with respect to the structure vector 𝜉, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a scalar 𝜃(< 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies R𝜉A = AR𝜉 and at the same time ∇𝜉R𝜉 = 0 on M, then M is a Hopf hypersurface of type (A) provided that the scalar curvature s of M holds s - 2(n - 1)c ≤ 0.

NORMAL INTERPOLATION ON AX = Y IN ALG$\mathcal{L}$

  • Jo, Young-Soo
    • Honam Mathematical Journal
    • /
    • v.30 no.2
    • /
    • pp.329-334
    • /
    • 2008
  • Given operators X and Y acting on a Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that AX = Y. In this article, the following is proved: Let $\mathcal{L}$ be a subspace lattice on $\mathcal{H}$ and let X and Y be operators acting on a Hilbert space H. Let P be the projection onto the $\overline{rangeX}$. If PE = EP for each E ${\in}$ $\mathcal{L}$, then the following are equivalent: (1) sup ${{\frac{{\parallel}E^{\perp}Yf{\parallel}}{{\parallel}E^{\perp}Xf{\parallel}}}:f{\in}\mathcal{H},\;E{\in}\mathcal{L}}$ < ${\infty},\;\overline{rangeY}\;{\subset}\;\overline{rangeX}$, and there is a bounded operator T acting on $\mathcal{H}$ such that < Xf, Tg >=< Yf, Xg >, < Tf, Tg >=< Yf, Yg > for all f and gin $\mathcal{H}$ and $T^*h$ = 0 for h ${\in}\;{\overline{rangeX}}^{\perp}$. (2) There is a normal operator A in AlgL such that AX = Y and Ag = 0 for all g in range ${\overline{rangeX}}^{\perp}$.

k-TH ROOTS OF p-HYPONORMAL OPERATORS

  • DUGGAL BHAGWATI P.;JEON IN Ho;KO AND EUNGIL
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.571-577
    • /
    • 2005
  • In this paper we prove that if T is a k-th root of a p­hyponormal operator when T is compact or T$^{n}$ is normal for some integer n > k, then T is (generalized) scalar, and that if T is a k-th root of a semi-hyponormal operator and have the property $\sigma$(T) is contained in an angle < 2$\pi$/k with vertex in the origin, then T is subscalar.

A WEIGHTED COMPOSITION OPERATOR ON THE LOGARITHMIC BLOCH SPACE

  • Ye, Shanli
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.527-540
    • /
    • 2010
  • We characterize the boundedness and compactness of the weighted composition operator on the logarithmic Bloch space $\mathcal{L}\ss=\{f{\in}H(D):sup_D(1-|z|^2)ln(\frac{2}{1-|z|})|f'(z)|$<+$\infty$ and the little logarithmic Bloch space ${\mathcal{L}\ss_0$. The results generalize the known corresponding results on the composition operator and the pointwise multiplier on the logarithmic Bloch space ${\mathcal{L}\ss$ and the little logarithmic Bloch space ${\mathcal{L}\ss_0$.