Finite Operators and Weyl Type Theorems for Quasi-*-n-Paranormal Operators

Fei Zuo* and Wei Yan

College of Mathematics and Information Science, Henan Normal University, Xinxiang Henan 453007, P. R. China

 $e ext{-}mail: { t zuofei2008@sina.com} \ \ and \ \ { t yanwei19821115@sina.cn}$

ABSTRACT. In this paper, we mainly obtain the following assertions: (1) If T is a quasi-*-n-paranormal operator, then T is finite and simply polaroid. (2) If T or T^* is a quasi-*-n-paranormal operator, then Weyl's theorem holds for f(T), where f is an analytic function on $\sigma(T)$ and is not constant on each connected component of the open set U containing $\sigma(T)$. (3) If E is the Riesz idempotent for a nonzero isolated point λ of the spectrum of a quasi-*-n-paranormal operator, then E is self-adjoint and $EH = N(T - \lambda) = N(T - \lambda)^*$.

1. Introduction

Let H be an infinite dimensional separable Hilbert space, denote by B(H) the algebra of all bounded linear operators on H, write N(T), R(T) and $\sigma(T)$ for the null space, range space and the spectrum of $T \in B(H)$, respectively.

In recent years, some operators have been introduced as natural extensions of hyponormal operators. For example: let n be positive integer.

- (1) T is *-paranormal if $||T^2x|| \ge ||T^*x||^2$ for unit vector x.(see [9])
- (2) T is *-n-paranormal if $||T^{1+n}x||^{\frac{1}{1+n}} \ge ||T^*x||$ for unit vector x (see [6])
- (3) T is n-paranormal if $||T^{1+n}x||^{\frac{1}{1+n}} \ge ||Tx||$ for unit vector x.(see [17])
- (4) T is normaloid if $||T^n|| = ||T||^n$ for $n \in \mathbb{N}$.(see [3])

In this paper, we generalize *-n-paranormal operators to quasi-*-n-paranormal operators as follows.

Definition 1.1. For a positive integer n, T is said to a quasi-*-n-paranormal operator if

$$||T^{2+n}x||^{\frac{1}{1+n}}||Tx||^{\frac{n}{1+n}} \ge ||T^*Tx||$$
 for every $x \in H$.

Received December 15, 2014; accepted May 13, 2015.

2010 Mathematics Subject Classification: 47A10, 47B20.

Key words and phrases: Quasi-*-n-paranormal operator, finite, polaroid, Weyl's theorem, Riesz idempotent.

This work was supported by the NNSF of China (11401180).

^{*} Corresponding Author.

Using the same method as that in Lemma 1.1 [19] we have

Lemma 1.2. T is quasi-*-n-paranormal operators if and only if

$$T^*(T^{*1+n}T^{1+n} - (n+1)\mu^nTT^* + n\mu^{1+n})T \ge 0$$
 for any $\mu > 0$.

Let $K = \bigoplus_{n=1}^{+\infty} H_n$, where $H_n \cong H$. Given positive operators A and B on H, we define the operator $T_{A,B}$ on K as follows:

$$T_{A,B} = \begin{pmatrix} 0 & 0 & 0 & 0 & \cdots \\ A & 0 & 0 & 0 & \cdots \\ 0 & B & 0 & 0 & \cdots \\ 0 & 0 & B & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots & \ddots \end{pmatrix}.$$

By straightforward computations, the following assertions hold:

- (i) $T_{A,B}$ is *-n-paranormal iff $B^{2n+2} (n+1)\mu^n A^2 + n\mu^{n+1} \ge 0$ for any $\mu > 0$. (ii) $T_{A,B}$ is quasi-*-n-paranormal iff $A(B^{2n+2} (n+1)\mu^n A^2 + n\mu^{n+1})A \ge 0$ for any $\mu > 0$.

So that we say $T_{A,B}$ has a very useful characterization by which one can distinguish *-n-paranormal operators from quasi-*-n-paranormal operators.

Example 1.3. A non-*-2-paranormal and quasi-*-2-paranormal operator.

Proof. Take

$$A = \left(\begin{array}{cc} 2 & 0 \\ 0 & 0 \end{array}\right), \quad B = \left(\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array}\right).$$

Then

$$B^6 - 3\mu^2 A^2 + 2\mu^3 = \begin{pmatrix} 233 - 12\mu + 2\mu^3 & 144 \\ 144 & 89 + 2\mu^3 \end{pmatrix}.$$

If $\mu = 1$, then $B^6 - 3\mu^2 A^2 + 2\mu^3 \ge 0$, so $T_{A,B}$ is not a *-2-paranormal operator. On the other hand, we have

$$A(B^6-3\mu^2A^2+2\mu^3)A=\left(\begin{array}{cc} 4(233-12\mu+2\mu^3) & 0\\ 0 & 0 \end{array}\right)\geq 0 \ \ for \ any \ \mu>0.$$

Hence $T_{A,B}$ is a quasi-*-2-paranormal operator.

2. Finite Operators

An operator $T \in B(H)$ is said to be finite [16] if

$$(2.1) ||I - (TX - XT)|| \ge 1$$

for all $X \in B(H)$, where I is the identity operator. Williams has shown that the class of finite operators contains every normal, hyponormal operators. In [7], Williams' results are generalized to a more class of operators containing the classes of normal and hyponormal operators. The inequality (2.1) is the starting point of the topic of commutator approximation.

Let $T \in B(H)$, we say that the approximate reduced spectrum of T, $\sigma_{ar}(T)$, is the set of scalars λ for which there exists a normed sequence $\{x_n\}$ in H satisfying

$$(T - \lambda I)x_n \to 0, (T - \lambda I)^*x_n \to 0.$$

In this section we present a new class of finite operators.

Lemma 2.1.([7]) Let $T \in B(H)$. Then $\partial W(T) \cap \sigma(T) \subset \sigma_{ar}(T)$, where W(T) is the numerical range of the operator T.

Lemma 2.2.([7]) If $\sigma_{ar}(T) \neq \phi$, then T is finite.

Lemma 2.3. If T is a quasi-*-n-paranormal operator, then T is normaloid.

Proof. One can see from the definition of quasi-*-n-paranormal operator that

$$||T^{n+2}x||||Tx||^n \ge ||T^*Tx||^{n+1}$$

for every $x \in H$. If x is replaced by $T^k x$, then

$$||T^{n+1+k}x||||T^kx||^n \geq ||T^*T^kx||^{n+1}$$

holds for any integer $k \geq 1$, which admits that

$$(2.2) ||T^{n+1+k}||||T^k||^n \ge ||T^*T^k||^{n+1}.$$

Now suppose that $||T^k|| = ||T||^k$ for some $k \ge 1$ (which holds tautologically for k = 1). Then

$$\begin{split} ||T||^{(k-1)(n+1)}||T^{n+1+k}||||T||^{kn} & \geq ||T^{*(k-1)}||^{n+1}||T^{n+1+k}||||T^k||^n \\ & \geq ||T^{*(k-1)}||^{n+1}||T^*T^k||^{n+1} \\ & \geq ||T^*kT^k||^{n+1} \\ & = ||T^k||^{2(n+1)} \\ & = ||T||^{2k(n+1)}, \end{split}$$

and hence

$$||T^{k+(n+1)}|| = ||T||^{k+(n+1)}.$$

Consequently, by induction, $||T^{1+(n+1)j}|| = ||T||^{1+(n+1)j}$ for every $j \geq 1$. This yields a subsequence $\{T^{n_j}\}$ of $\{T^n\}$, say $T^{n_j} = T^{1+(n+1)j}$, such that $\lim_j ||T^{n_j}||^{\frac{1}{n_j}} = \lim_j (||T||^{n_j})^{\frac{1}{n_j}} = ||T||$. Notice that $\{||T^n||^{\frac{1}{n}}\}$ is a convergent sequence that converges to r(T), where r(T) is the spectral radius of T, it follows that r(T) = ||T||. Therefore T is normaloid.

Now, we establish an interesting property of quasi-*-n-paranormal operators.

Theorem 2.4. Let $T \in B(H)$. If T is a quasi-*-n-paranormal operator, then T is finite.

Proof. The hypothesis implies that T is normaloid by Lemma 2.3, and so is spectraloid, that is $\omega(T) = r(T)$, where $\omega(T)$ is the numerical radius of T. Then there exists $\lambda \in \sigma(T) \subset \overline{W(T)}$ such that $|\lambda| = \omega(T)$, where W(T) is the numerical range of T. Thus $\lambda \in \partial W(T)$, which implies that $\partial W(T) \cap \sigma(T) \neq \emptyset$. Then the required result follows from Lemma 2.1 and Lemma 2.2.

3. Weyl Type Theorems

An operator T is called Fredholm if R(T) is closed, $\alpha(T) = \dim N(T) < \infty$ and $\beta(T) = \dim H/R(T) < \infty$. Moreover if $i(T) = \alpha(T) - \beta(T) = 0$, then T is called Weyl. The essential spectrum $\sigma_e(T)$ and the Weyl spectrum $\sigma_W(T)$ are defined by

$$\sigma_e(T) = \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not Fredholm} \}$$

and

$$\sigma_W(T) = \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not Weyl} \},$$

respectively. It is known that $\sigma_e(T) \subset \sigma_W(T) \subset \sigma_e(T) \cup \operatorname{acc} \sigma(T)$, where we write acc K for the set of all accumulation points of $K \subset \mathbb{C}$. If we write iso $K = K \setminus \operatorname{acc} K$, then we note

$$\pi_{00}(T) = \{ \lambda \in \text{iso } \sigma(T) : 0 < \alpha(T - \lambda) < \infty \}.$$

We say that Weyl's theorem holds for T if

$$\sigma(T) \setminus \sigma_W(T) = \pi_{00}(T).$$

In [14] the authors obtained that Weyl's theorem holds for *-paranormal operators. In [11] the authors obtained that Weyl's theorem holds for quasi-*-paranormal operators. In this section, we prove that Weyl's theorem holds for quasi-*-n-paranormal operators.

Lemma 3.1.([18]) If T is a quasi-*-n-paranormal operator and R(T) is not dense, then T has the matrix representation as follows:

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & 0 \end{pmatrix} on \ H = \overline{R(T)} \oplus N(T^*),$$

where T_1 is *-n-paranormal operator.

Proof. Since T is a quasi-*-n-paranormal operator and T does not have dense range, we can represent T as the following 2×2 operator matrix with respect to the decomposition $H = \overline{R(T)} \oplus N(T^*)$,

$$T = \left(\begin{array}{cc} T_1 & T_2 \\ 0 & 0 \end{array} \right).$$

One can see from the definition of quasi-*-n-paranormal operator that

$$T^*(T^{*1+n}T^{1+n} - (n+1)\mu^nTT^* + n\mu^{1+n})T \ge 0$$
 for any $\mu > 0$.

Then, for any $\mu > 0$ and all $x \in \overline{R(T)}$, we have

$$((T_1^{*1+n}T_1^{1+n} - (n+1)\mu^n(T_1T_1^* + T_2T_2^*) + n\mu^{1+n})x, x) \ge 0,$$

which yields that

$$((T_1^{*1+n}T_1^{1+n} - (n+1)\mu^n T_1 T_1^* + n\mu^{1+n})x, x) \ge 0$$
 for any $\mu > 0$.

Therefore, T_1 is a *-n-paranormal operator.

Recall that $T \in B(H)$ has the single valued extension property (abbrev. SVEP), if for every open set U of \mathbb{C} , the only analytic solution $f: U \to H$ of the equation $(T - \lambda)f(\lambda) = 0$ for all $\lambda \in U$ is the zero function on U.

Theorem 3.2. If T is a quasi-*-n-paranormal operator, then T has SVEP.

Proof. If the range of T is dense, then T is *-n-paranormal operator. Hence T has SVEP by [19, Corollary 1]. Assume that the range of T is not dense. By Lemma 3.1, we have

$$T = \left(\begin{array}{cc} T_1 & T_2 \\ 0 & 0 \end{array} \right) \text{ on } H = \overline{R(T)} \oplus N(T^*).$$

Assume (T-z)f(z)=0. Put $f(z)=f_1(z)\oplus f_2(z)$ on $H=\overline{R(T)}\oplus N(T^*)$. Then

$$\left(\begin{array}{cc} T_1-z & T_2 \\ 0 & -z \end{array}\right) \left(\begin{array}{c} f_1(z) \\ f_2(z) \end{array}\right) = \left(\begin{array}{c} (T_1-z)f_1(z) + T_2f_2(z) \\ -zf_2(z) \end{array}\right) = 0.$$

Since $f_2(z) = 0$, $(T_1 - z)f_1(z) = 0$. And T_1 is *-n-paranormal operator, T_1 has SVEP by [19, Corollary 1]. Hence $f_1(z) = 0$. Consequently, T has SVEP.

Theorem 3.3. If T is a quasi-*-n-paranormal operator with spectrum $\sigma(T) \subseteq \partial D$, where D denotes the unite disc, then T is unitary.

Proof. Since T is a quasi-*-n-paranormal operator, for all $x \in H$,

$$||Tx||^{2n+2} = (Tx, Tx)^{n+1}$$

$$\leq ||T^*Tx||^{n+1}||x||^{n+1}$$

$$\leq ||T^{n+2}x||||Tx||^n||x||^{n+1},$$

implies that $||Tx||^{n+2} \le ||T^{n+2}x|| ||x||^{n+1}$, for all $x \in H$. Hence T is a n+1 paranormal operator. Thus T is unitary by [14, Theorem 1].

Recall that an operator T is said to be isoloid if every isolated point of $\sigma(T)$ is an eigenvalue of T and polaroid if every isolated point of $\sigma(T)$ is a pole of the resolvent of T, respectively. In general, if T is polaroid then it is isoloid. However, the converse is not true.

The quasinilpotent part $H_0(T-\lambda)$ and the analytic core $K(T-\lambda)$ are defined by $H_0(T-\lambda)=\{x\in H: \lim_{n\to\infty}\|(T-\lambda)^nx\|^{\frac{1}{n}}=0\}$ and $K(T-\lambda)=\{x\in H: \text{ there exists a sequence }\{x_n\}\subseteq H \text{ and }c>0 \text{ for which }x=x_0, (T-\lambda)x_{n+1}=x_n \text{ and }\|x_n\|\leq c^n\|x\| \text{ for all }n\in\mathbb{N}\}.$ We note that $H_0(T-\lambda)$ and $K(T-\lambda)$ are generally non-closed hyperinvariant subspaces of $T-\lambda$ such that $N(T-\lambda)^n\subseteq H_0(T-\lambda)$ for all $n\in\mathbb{N}$ and $(T-\lambda)K(T-\lambda)=K(T-\lambda)$; also, if $\lambda\in\text{iso }\sigma(T)$, then $H=H_0(T-\lambda)\oplus K(T-\lambda)$, where $H_0(T-\lambda)$ and $K(T-\lambda)$ are closed [1, Theorem 3.76].

Theorem 3.4. If T is a quasi-*-n-paranormal operator, then T is simply polaroid. Proof. Let $\lambda \in \text{iso } \sigma(T)$, T is quasi-*-n-paranormal operators. Then

$$H = H_0(T - \lambda) \oplus K(T - \lambda),$$

where $H_0(T-\lambda)$ and $K(T-\lambda)$ are closed, $\sigma(T_1) := \sigma(T|_{H_0(T-\lambda)}) = \{\lambda\}$ and $\sigma(T|_{K(T-\lambda)}) = \sigma(T) \setminus \{\lambda\}$. If $\lambda = 0$, then, T being normaloid, $T_1 = 0$ and $H_0(T) = N(T)$. If instead $\lambda \neq 0$, we may assume that $\lambda = 1$. Applying Theorem 3.3 it follows that T_1 is unitary. Thus by [5, Theorem 1.5.14] $T_1 = I|_{H_0(T-1)}$, which implies that $H_0(T-1) = N(T-1)$. Consequently, in either case, we have that $H_0(T-\lambda) = N(T-\lambda)$. So that T is simply polaroid follows from the implications

$$H = N(T - \lambda) \oplus K(T - \lambda)$$

$$\Rightarrow (T - \lambda)H = 0 \oplus (T - \lambda)K(T - \lambda) = K(T - \lambda)$$

$$\Rightarrow H = N(T - \lambda) \oplus R(T - \lambda).$$

Theorem 3.5. Let T or T^* be a quasi-*-n-paranormal operator. Then Weyl's theorem holds for f(T), where f is an analytic function on $\sigma(T)$ and is not constant on each connected component of the open set U containing $\sigma(T)$.

Proof. From [2, Theorem 2.11], we have that T is polaroid if and only if T^* is polaroid. We use the fact that if T is polaroid and T or T^* has SVEP then both T and T^* satisfy Weyl's theorem in [2, Theorem 3.3]. Suppose that T or T^* is quasi-*-n-paranormal operator. By Theorem 3.2 and Theorem 3.4 we have that T satisfies Weyl's theorem. We show next that Weyl's theorem holds for f(T). Since T is polaroid and has SVEP, then f(T) is polaroid by [2, Lemma 3.11] and has SVEP by [1, Theorem 2.40]. Consequently, Weyl's theorem holds for f(T).

Corollary 3.6. Let T or T^* be a quasi-*-n-paranormal operator. If F is an operator commuting with T and F^n has a finite rank for some $n \in \mathbb{N}$, then Weyl's theorem holds for f(T) + F, where f is an analytic function on $\sigma(T)$ and is not constant on each connected component of the open set U containing $\sigma(T)$.

Proof. Suppose T or T^* is a quasi-*-n-paranormal operator. By Theorem 3.4 and Theorem 3.5, we have that T is isoloid and Weyl's theorem holds for f(T). Notice that T is isoloid then f(T) is isoloid. The required result stems from [8, Theorem 2.4] .

4. Riesz Idempotent

Let λ be an isolated point of the spectrum of T. Then the Riesz idempotent E of T with respect to λ is defined by $E = \frac{1}{2\pi i} \int_{\partial D} (\mu - T)^{-1} d\mu$, where D is a closed disk centered at λ which contains no other points of the spectrum of T. Stampfli [12] showed that if T satisfies the growth condition G_1 , then E is self-adjoint and $E(H) = N(T - \lambda)$. Recently, Jeon and Kim [4] and Uchiyama [15] obtained Stampfli's result for quasi-class A operators and paranormal operators, Tanahashi, Jeon, Kim and Uchiyama [13] obtained Stampfli's result for quasi-class (A, k) operators, Tanahashi and Uchiyama [14] obtained Stampfli's result for *-paranormal operators. In this paper, we extend this result to quasi-*-n-paranormal operators.

Lemma 4.1.([18]) If T is a quasi-*-n-paranormal operator and $\lambda \neq 0$, then $Tx = \lambda x$ implies $T^*x = \overline{\lambda}x$.

Theorem 4.2. If T is a quasi-*-n-paranormal operator, $0 \neq \lambda \in iso \ \sigma(T)$ and E is the Riesz idempotent of T with respect to λ , then E is self-adjoint and $EH = N(T - \lambda) = N(T - \lambda)^*$.

Proof. If T is a quasi-*-n-paranormal operator and λ is a nonzero isolated point of $\sigma(T)$, then $EH = N(T - \lambda)$ by Theorem 3.4. Since $N(T - \lambda) \subseteq N(T - \lambda)^*$ by Lemma 4.1, it suffices to show that $N(T - \lambda)^* \subseteq N(T - \lambda)$. Since $N(T - \lambda)$ is a reducing subspace of T by Lemma 4.1 and the restriction of a quasi-*-n-paranormal operator to its reducing subspace is also a quasi-*-n-paranormal operator, T can be written as $T = \lambda \oplus T_1$ on $H = N(T - \lambda) \oplus (N(T - \lambda))^{\perp}$, where T_1 is quasi-*-n-paranormal operator with $N(T_1 - \lambda) = \{0\}$. Since $\lambda \in \sigma(T) = \{\lambda\} \cup \sigma(T_1)$ is isolated, only two cases occur: either $\lambda \notin \sigma(T_1)$, or λ is an isolated point of $\sigma(T_1)$ and this contradicts the fact that $N(T_1 - \lambda) = \{0\}$. Since $T_1 - \lambda$ is invertible as an operator on $N(T - \lambda)^{\perp}$, we have $N(T - \lambda) = N(T - \lambda)^*$.

Next, we show that E is self-adjoint. Since E is the Riesz idempotent of T with respect to λ and T is a quasi-*-n-paranormal operator, it results from Theorem 3.4 that $R(E) = N(T - \lambda)$ and $N(E) = R(T - \lambda)$. Since $N(T - \lambda) \subseteq N(T - \lambda)^*$ by Lemma 4.1, then $N(T - \lambda)$ and $R(T - \lambda)$ are orthogonal. Hence $R(E)^{\perp} = N(E)$, and so E is self-adjoint.

References

- [1] P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer Academic Publishers, London, 2004.
- [2] P. Aiena, E. Aponte and E. Balzan, Weyl type theorems for left and right polaroid operators, Integr. Equ. Oper. Theory, 66(1)(2010), 1-20.
- [3] T. Furuta, Invitation to Linear Operators, Taylor & Francis, London, 2001.

- [4] I. H. Jeon and I. H. Kim, On operators satisfying $T^*|T^2|T \ge T^*|T|^2T$, Linear Algebra Appl., **418**(2006), 854-862.
- [5] K. B. Laursen and M. M. Neumann, Introduction to Local Spectral Theory, Clarendon Press, Oxford, 2000.
- [6] M. Y. Lee, S. H. Lee and C. S. Rhoo, Some remarks on the structure of k-*-paranormal operators, Kyungpook Math. J., **35**(1995), 205-211.
- [7] S. Mecheri, Finite operators, Demonstratio Math., 35(2)(2002), 357-366.
- [8] M. Oudghiri, Weyl's theorem and purturbations, Integr. Equ. Oper. Theory, 53(4)(2005), 535-545.
- [9] S. M. Patel, Contributions to the Study of Spectraloid Operators, PhD, Delhi Univ, DE, India, 1974.
- [10] V. Rakočević, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl., 34(10)(1989), 915-919.
- [11] J. L. Shen and Alatancang, *The spectral properties of quasi-*-paranormal operators*, Chinese Annals of Mathematics (China), **34(6)**(2013), 663-670.
- [12] J. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc., 117(1965), 469-476.
- [13] K. Tanahashi, I. H. Jeon, I. H. Kim and A. Uchiyama, Quasinilpotent part of class A or (p,k)-quasihyponormal operators, Operator Theory, Advances and Applications, 187(2008), 199-210.
- [14] K. Tanahashi and A. Uchiyama, A note on *-paranormal operators and related classes of operators, Bull. Korean Math. Soc., 51(2)(2014), 357-371.
- [15] A. Uchiyama, On the isolated points of the spectrum of paranomal operators, Integr. Equ. Oper. Theory, **55**(2006), 145-151.
- [16] J. P. Williams, Finite operators, Proc. Amer. Math. Soc., 26(1970), 129-135.
- [17] J. T. Yuan and Z. S. Gao, Weyl spectrum of class A(n) and n-paranomal operators, Integr. Equ. Oper. Theory, $\mathbf{60}(2008)$, 289-298.
- [18] F. Zuo, On quasi-*-n-paranormal operators, J. Math. Inequal., 9(2)(2015), 409-415.
- [19] F. Zuo and J. L. Shen, A note on *-n-paranormal operators, Adv. Math. (China), 42(2)(2013), 156-163.