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Abstract. In this paper, we mainly obtain the following assertions: (1) If T is a quasi-∗-
n-paranormal operator, then T is finite and simply polaroid. (2) If T or T ∗ is a quasi-∗-n-
paranormal operator, then Weyl’s theorem holds for f(T ), where f is an analytic function

on σ(T ) and is not constant on each connected component of the open set U containing

σ(T ). (3) If E is the Riesz idempotent for a nonzero isolated point λ of the spectrum of a

quasi-∗-n-paranormal operator, then E is self-adjoint and EH = N(T −λ) = N(T −λ)∗.

1. Introduction

Let H be an infinite dimensional separable Hilbert space, denote by B(H) the
algebra of all bounded linear operators on H, write N(T ), R(T ) and σ(T ) for the
null space, range space and the spectrum of T ∈ B(H), respectively.

In recent years, some operators have been introduced as natural extensions of
hyponormal operators. For example: let n be positive integer.
(1) T is ∗-paranormal if ||T 2x|| ≥ ||T ∗x||2 for unit vector x.(see [9])

(2) T is ∗-n-paranormal if ||T 1+nx||
1

1+n ≥ ||T ∗x|| for unit vector x.(see [6])

(3) T is n-paranormal if ||T 1+nx||
1

1+n ≥ ||Tx|| for unit vector x.(see [17])
(4) T is normaloid if ||Tn|| = ||T ||n for n ∈ N.(see [3])

In this paper, we generalize ∗-n-paranormal operators to quasi-∗-n-paranormal
operators as follows.

Definition 1.1. For a positive integer n, T is said to a quasi-∗-n-paranormal
operator if

||T 2+nx||
1

1+n ||Tx||
n

1+n ≥ ||T ∗Tx|| for every x ∈ H.
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Using the same method as that in Lemma 1.1 [19] we have

Lemma 1.2. T is quasi-∗-n-paranormal operators if and only if

T ∗(T ∗1+nT 1+n − (n+ 1)µnTT ∗ + nµ1+n)T ≥ 0 for any µ > 0.

Let K = ⊕+∞
n=1Hn, where Hn

∼= H. Given positive operators A and B on H, we
define the operator TA,B on K as follows:

TA,B =


0 0 0 0 · · ·
A 0 0 0 · · ·
0 B 0 0 · · ·
0 0 B 0 · · ·
...

...
...

. . .
. . .

 .

By straightforward computations, the following assertions hold:
(i) TA,B is ∗-n-paranormal iff B2n+2 − (n+ 1)µnA2 + nµn+1 ≥ 0 for any µ > 0.
(ii) TA,B is quasi-∗-n-paranormal iff A(B2n+2 − (n + 1)µnA2 + nµn+1)A ≥ 0 for
any µ > 0.
So that we say TA,B has a very useful characterization by which one can distinguish
∗-n-paranormal operators from quasi-∗-n-paranormal operators.

Example 1.3. A non-∗-2-paranormal and quasi-∗-2-paranormal operator.

Proof. Take

A =

(
2 0
0 0

)
, B =

(
2 1
1 1

)
.

Then

B6 − 3µ2A2 + 2µ3 =

(
233− 12µ+ 2µ3 144
144 89 + 2µ3

)
.

If µ = 1, thenB6 − 3µ2A2 + 2µ3 � 0, so TA,B is not a ∗-2-paranormal operator.
On the other hand, we have

A(B6 − 3µ2A2 + 2µ3)A =

(
4(233− 12µ+ 2µ3) 0
0 0

)
≥ 0 for any µ > 0.

Hence TA,B is a quasi-∗-2-paranormal operator. 2

2. Finite Operators

An operator T ∈ B(H) is said to be finite [16] if

(2.1) ||I − (TX −XT )|| ≥ 1

for all X ∈ B(H), where I is the identity operator. Williams has shown that
the class of finite operators contains every normal, hyponormal operators. In [7],
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Williams’ results are generalized to a more class of operators containing the classes
of normal and hyponormal operators. The inequality (2.1) is the starting point of
the topic of commutator approximation.

Let T ∈ B(H), we say that the approximate reduced spectrum of T, σar(T ), is
the set of scalars λ for which there exists a normed sequence {xn} in H satisfying

(T − λI)xn → 0, (T − λI)∗xn → 0.

In this section we present a new class of finite operators.

Lemma 2.1.([7]) Let T ∈ B(H). Then ∂W (T ) ∩ σ(T ) ⊂ σar(T ), where W (T ) is
the numerical range of the operator T .

Lemma 2.2.([7]) If σar(T ) ̸= ϕ, then T is finite.

Lemma 2.3. If T is a quasi-∗-n-paranormal operator, then T is normaloid.

Proof. One can see from the definition of quasi-∗-n-paranormal operator that

||Tn+2x||||Tx||n ≥ ||T ∗Tx||n+1

for every x ∈ H. If x is replaced by T kx, then

||Tn+1+kx||||T kx||n ≥ ||T ∗T kx||n+1

holds for any integer k ≥ 1, which admits that

||Tn+1+k||||T k||n ≥ ||T ∗T k||n+1.(2.2)

Now suppose that||T k|| = ||T ||k for some k ≥ 1 (which holds tautologically for
k = 1). Then

||T ||(k−1)(n+1)||Tn+1+k||||T ||kn ≥ ||T ∗(k−1)||n+1||Tn+1+k||||T k||n

≥ ||T ∗(k−1)||n+1||T ∗T k||n+1

≥ ||T ∗kT k||n+1

= ||T k||2(n+1)

= ||T ||2k(n+1),

and hence
||T k+(n+1)|| = ||T ||k+(n+1).

Consequently, by induction, ||T 1+(n+1)j || = ||T ||1+(n+1)j for every j ≥ 1. This

yields a subsequence {Tnj} of {Tn}, say Tnj = T 1+(n+1)j , such that limj ||Tnj ||
1
nj =

limj(||T ||nj )
1
nj = ||T ||. Notice that {||Tn|| 1

n } is a convergent sequence that con-
verges to r(T ), where r(T ) is the spectral radius of T , it follows that r(T ) = ||T ||.
Therefore T is normaloid. 2

Now, we establish an interesting property of quasi-∗-n-paranormal operators.
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Theorem 2.4. Let T ∈ B(H). If T is a quasi-∗-n-paranormal operator, then T is
finite.

Proof. The hypothesis implies that T is normaloid by Lemma 2.3, and so is spec-
traloid, that is ω(T ) = r(T ), where ω(T ) is the numerical radius of T . Then there
exists λ ∈ σ(T ) ⊂W (T ) such that |λ| = ω(T ), where W (T ) is the numerical range
of T . Thus λ ∈ ∂W (T ), which implies that ∂W (T ) ∩ σ(T ) ̸= ∅. Then the required
result follows from Lemma 2.1 and Lemma 2.2. 2

3. Weyl Type Theorems

An operator T is called Fredholm if R(T ) is closed, α(T ) = dimN(T ) <∞ and
β(T ) = dimH/R(T ) < ∞. Moreover if i(T ) = α(T ) − β(T ) = 0, then T is called
Weyl. The essential spectrum σe(T ) and the Weyl spectrum σW (T ) are defined by

σe(T ) = {λ ∈ C : T − λ is not Fredholm}

and
σW (T ) = {λ ∈ C : T − λ is not Weyl},

respectively. It is known that σe(T ) ⊂ σW (T ) ⊂ σe(T ) ∪ acc σ(T ), where we write
accK for the set of all accumulation points ofK ⊂ C. If we write isoK = K\accK,
then we note

π00(T ) = {λ ∈ iso σ(T ) : 0 < α(T − λ) <∞}.

We say that Weyl’s theorem holds for T if

σ(T ) \ σW (T ) = π00(T ).

In [14] the authors obtained that Weyl’s theorem holds for ∗-paranormal opera-
tors. In [11] the authors obtained that Weyl’s theorem holds for quasi-∗-paranormal
operators. In this section, we prove that Weyl’s theorem holds for quasi-∗-n-
paranormal operators.

Lemma 3.1.([18]) If T is a quasi-∗-n-paranormal operator and R(T) is not dense,
then T has the matrix representation as follows:

T =

(
T1 T2
0 0

)
on H = R(T )⊕N(T ∗),

where T1 is ∗-n-paranormal operator.

Proof. Since T is a quasi-∗-n-paranormal operator and T does not have dense
range, we can represent T as the following 2 × 2 operator matrix with respect to
the decomposition H = R(T )⊕N(T ∗),

T =

(
T1 T2
0 0

)
.
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One can see from the definition of quasi-∗-n-paranormal operator that

T ∗(T ∗1+nT 1+n − (n+ 1)µnTT ∗ + nµ1+n)T ≥ 0 for any µ > 0.

Then, for any µ > 0 and all x ∈ R(T ), we have

((T ∗1+n
1 T 1+n

1 − (n+ 1)µn(T1T
∗
1 + T2T

∗
2 ) + nµ1+n)x, x) ≥ 0,

which yields that

((T ∗1+n
1 T 1+n

1 − (n+ 1)µnT1T
∗
1 + nµ1+n)x, x) ≥ 0 for any µ > 0.

Therefore, T1 is a ∗-n-paranormal operator. 2

Recall that T ∈ B(H) has the single valued extension property(abbrev. SVEP),
if for every open set U of C, the only analytic solution f : U → H of the equation
(T − λ)f(λ) = 0 for all λ ∈ U is the zero function on U.

Theorem 3.2. If T is a quasi-∗-n-paranormal operator, then T has SVEP.

Proof. If the range of T is dense, then T is ∗-n-paranormal operator. Hence T has
SVEP by [19, Corollary 1]. Assume that the range of T is not dense. By Lemma
3.1, we have

T =

(
T1 T2
0 0

)
on H = R(T )⊕N(T ∗).

Assume (T − z)f(z) = 0. Put f(z) = f1(z)⊕ f2(z) on H = R(T )⊕N(T ∗). Then(
T1 − z T2

0 −z

)(
f1(z)
f2(z)

)
=

(
(T1 − z)f1(z) + T2f2(z)

−zf2(z)

)
= 0.

Since f2(z) = 0, (T1 − z)f1(z) = 0. And T1 is ∗-n-paranormal operator, T1 has
SVEP by [19, Corollary 1]. Hence f1(z) = 0. Consequently, T has SVEP. 2

Theorem 3.3. If T is a quasi-∗-n-paranormal operator with spectrum σ(T ) ⊆ ∂D,
where D denotes the unite disc, then T is unitary.

Proof. Since T is a quasi-∗-n-paranormal operator, for all x ∈ H,

||Tx||2n+2 = (Tx, Tx)n+1

≤ ||T ∗Tx||n+1||x||n+1

≤ ||Tn+2x||||Tx||n||x||n+1,

implies that ||Tx||n+2 ≤ ||Tn+2x||||x||n+1, for all x ∈ H. Hence T is a n + 1
paranormal operator. Thus T is unitary by [14, Theorem 1]. 2

Recall that an operator T is said to be isoloid if every isolated point of σ(T )
is an eigenvalue of T and polaroid if every isolated point of σ(T ) is a pole of the
resolvent of T , respectively. In general, if T is polaroid then it is isoloid. However,
the converse is not true.
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The quasinilpotent part H0(T − λ) and the analytic core K(T − λ) are de-

fined by H0(T − λ) = {x ∈ H : lim
n→∞

∥(T − λ)nx∥ 1
n = 0} and K(T − λ) = {x ∈

H : there exists a sequence {xn} ⊆ H and c > 0 for which x = x0, (T −
λ)xn+1 = xn and ∥xn∥ ≤ cn∥x∥ for all n ∈ N}. We note that H0(T − λ) and
K(T − λ) are generally non-closed hyperinvariant subspaces of T − λ such that
N(T − λ)n ⊆ H0(T − λ) for all n ∈ N and (T − λ)K(T − λ) = K(T − λ); also, if
λ ∈ iso σ(T ), then H = H0(T −λ)⊕K(T −λ), where H0(T −λ) and K(T −λ) are
closed [1, Theorem 3.76].

Theorem 3.4. If T is a quasi-∗-n-paranormal operator, then T is simply polaroid.
Proof. Let λ ∈ iso σ(T ), T is quasi-∗-n-paranormal operators. Then

H = H0(T − λ)⊕K(T − λ),

where H0(T − λ) and K(T − λ) are closed, σ(T1) := σ(T |H0(T−λ)) = {λ} and
σ(T |K(T−λ)) = σ(T )\{λ}. If λ = 0, then, T being normaloid, T1 = 0 and H0(T ) =
N(T ). If instead λ ̸= 0, we may assume that λ = 1. Applying Theorem 3.3 it
follows that T1 is unitary. Thus by [5, Theorem 1.5.14] T1 = I|H0(T−1), which
implies that H0(T − 1) = N(T − 1). Consequently, in either case, we have that
H0(T − λ) = N(T − λ). So that T is simply polaroid follows from the implications

H = N(T − λ)⊕K(T − λ)

⇒ (T − λ)H = 0⊕ (T − λ)K(T − λ) = K(T − λ)

⇒ H = N(T − λ)⊕R(T − λ). 2

Theorem 3.5. Let T or T ∗ be a quasi-∗-n-paranormal operator. Then Weyl’s
theorem holds for f(T ), where f is an analytic function on σ(T ) and is not constant
on each connected component of the open set U containing σ(T ).

Proof. From [2, Theorem 2.11], we have that T is polaroid if and only if T ∗ is
polaroid. We use the fact that if T is polaroid and T or T ∗ has SVEP then both
T and T ∗ satisfy Weyl’s theorem in [2, Theorem 3.3]. Suppose that T or T ∗ is
quasi-∗-n-paranormal operator. By Theorem 3.2 and Theorem 3.4 we have that T
satisfies Weyl’s theorem. We show next that Weyl’s theorem holds for f(T ). Since
T is polaroid and has SVEP, then f(T ) is polaroid by [2, Lemma 3.11] and has
SVEP by [1, Theorem 2.40]. Consequently, Weyl’s theorem holds for f(T ). 2

Corollary 3.6. Let T or T ∗ be a quasi-∗-n-paranormal operator. If F is an operator
commuting with T and Fn has a finite rank for some n ∈ N, then Weyl’s theorem
holds for f(T )+F , where f is an analytic function on σ(T ) and is not constant on
each connected component of the open set U containing σ(T ).

Proof. Suppose T or T ∗ is a quasi-∗-n-paranormal operator. By Theorem 3.4 and
Theorem 3.5, we have that T is isoloid and Weyl’s theorem holds for f(T ). Notice
that T is isoloid then f(T ) is isoloid. The required result stems from [8, Theorem
2.4] . 2
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4. Riesz Idempotent

Let λ be an isolated point of the spectrum of T . Then the Riesz idempotent
E of T with respect to λ is defined by E = 1

2πi

∫
∂D

(µ − T )−1dµ, where D is a
closed disk centered at λ which contains no other points of the spectrum of T .
Stampfli [12] showed that if T satisfies the growth condition G1, then E is self-
adjoint and E(H) = N(T − λ). Recently, Jeon and Kim [4] and Uchiyama [15]
obtained Stampfli’s result for quasi-class A operators and paranormal operators,
Tanahashi, Jeon, Kim and Uchiyama [13] obtained Stampfli’s result for quasi-class
(A, k) operators, Tanahashi and Uchiyama [14] obtained Stampfli’s result for ∗-
paranormal operators. In this paper, we extend this result to quasi-∗-n-paranormal
operators.

Lemma 4.1.([18]) If T is a quasi-∗-n-paranormal operator and λ ̸= 0, then Tx = λx
implies T ∗x = λx.

Theorem 4.2. If T is a quasi-∗-n-paranormal operator, 0 ̸= λ ∈ iso σ(T ) and E
is the Riesz idempotent of T with respect to λ, then E is self-adjoint and EH =
N(T − λ) = N(T − λ)∗.

Proof. If T is a quasi-∗-n-paranormal operator and λ is a nonzero isolated point
of σ(T ), then EH = N(T − λ) by Theorem 3.4. Since N(T − λ) ⊆ N(T − λ)∗ by
Lemma 4.1, it suffices to show that N(T − λ)∗ ⊆ N(T − λ). Since N(T − λ) is a
reducing subspace of T by Lemma 4.1 and the restriction of a quasi-∗-n-paranormal
operator to its reducing subspace is also a quasi-∗-n-paranormal operator, T can
be written as T = λ ⊕ T1 on H = N(T − λ) ⊕ (N(T − λ))⊥, where T1 is quasi-∗-
n-paranormal operator with N(T1 − λ) = {0}. Since λ ∈ σ(T ) = {λ} ∪ σ(T1) is
isolated, only two cases occur: either λ /∈ σ(T1), or λ is an isolated point of σ(T1)
and this contradicts the fact that N(T1 − λ) = {0}. Since T1 − λ is invertible as an
operator on (N(T − λ))⊥, we have N(T − λ) = N(T − λ)∗.

Next, we show that E is self-adjoint. Since E is the Riesz idempotent of T with
respect to λ and T is a quasi-∗-n-paranormal operator, it results from Theorem 3.4
that R(E) = N(T − λ) and N(E) = R(T − λ). Since N(T − λ) ⊆ N(T − λ)∗ by
Lemma 4.1, then N(T − λ) and R(T − λ) are orthogonal. Hence R(E)⊥ = N(E),
and so E is self-adjoint. 2

References

[1] P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers,
Kluwer Academic Publishers, London, 2004.

[2] P. Aiena, E. Aponte and E. Balzan, Weyl type theorems for left and right polaroid
operators, Integr. Equ. Oper. Theory, 66(1)(2010), 1-20.

[3] T. Furuta, Invitation to Linear Operators, Taylor & Francis, London, 2001.



892 F. Zuo and W. Yan

[4] I. H. Jeon and I. H. Kim, On operators satisfying T ∗|T 2|T ≥ T ∗|T |2T , Linear Algebra
Appl., 418(2006), 854-862.

[5] K. B. Laursen and M. M. Neumann, Introduction to Local Spectral Theory, Claren-
don Press, Oxford, 2000.

[6] M. Y. Lee, S. H. Lee and C. S. Rhoo, Some remarks on the structure of k-∗-paranormal
operators, Kyungpook Math. J., 35(1995), 205-211.

[7] S. Mecheri, Finite operators, Demonstratio Math., 35(2)(2002), 357-366.

[8] M. Oudghiri, Weyl’s theorem and purturbations, Integr. Equ. Oper. Theory,
53(4)(2005), 535-545.

[9] S. M. Patel, Contributions to the Study of Spectraloid Operators, PhD, Delhi Univ,
DE, India, 1974.
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