DOI QR코드

DOI QR Code

GENERAL NONLINEAR VARIATIONAL INCLUSIONS WITH H-MONOTONE OPERATOR IN HILBERT SPACES

  • Liu, Zeqing (DEPARTMENT OF MATHEMATICS LIAONING NORMAL UNIVERSITY) ;
  • Zheng, Pingping (DEPARTMENT OF MATHEMATICS LIAONING NORMAL UNIVERSITY) ;
  • Cai, Tao (DEPARTMENT OF MATHEMATICS KUNMING UNIVERSITY) ;
  • Kang, Shin-Min (DEPARTMENT OF MATHEMATICS RESEARCH INSTITUTE OF NATURAL SCIENCE GYEONGSANG NATIONAL UNIVERSITY)
  • Published : 2010.03.31

Abstract

In this paper, a new class of general nonlinear variational inclusions involving H-monotone is introduced and studied in Hilbert spaces. By applying the resolvent operator associated with H-monotone, we prove the existence and uniqueness theorems of solution for the general nonlinear variational inclusion, construct an iterative algorithm for computing approximation solution of the general nonlinear variational inclusion and discuss the convergence of the iterative sequence generated by the algorithm. The results presented in this paper improve and extend many known results in recent literatures.

Keywords

References

  1. S. Adly, Perturbed algorithms and sensitivity analysis for a general class of variationalinclusions, J. Math. Anal. Appl. 201 (1996), no. 2, 609–630. https://doi.org/10.1006/jmaa.1996.0277
  2. X. P. Ding, Perturbed proximal point algorithms for generalized quasivariational inclusions,J. Math. Anal. Appl. 210 (1997), no. 1, 88–101. https://doi.org/10.1006/jmaa.1997.5370
  3. Y. P. Fang and N. J. Huang, H-monotone operator and resolvent operator technique forvariational inclusions, Appl. Math. Comput. 145 (2003), no. 2-3, 795–803. https://doi.org/10.1016/S0096-3003(03)00275-3
  4. N. J. Huang, On the generalized implicit quasivariational inequalities, J. Math. Anal.Appl. 216 (1997), no. 1, 197–210. https://doi.org/10.1006/jmaa.1997.5671
  5. N. J. Huang, Mann and Ishikawa type perturbed iterative algorithms for generalized nonlinearimplicit quasi-variational inclusions, Comput. Math. Appl. 35 (1998), no. 10, 1–7. https://doi.org/10.1016/S0898-1221(98)00066-2
  6. L. S. Liu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretivemappings in Banach spaces, J. Math. Anal. Appl. 194 (1995), no. 1, 114–125. https://doi.org/10.1006/jmaa.1995.1289
  7. Z. Liu, J. S. Ume, and S. M. Kang, General strongly nonlinear quasivariational inequalitieswith relaxed Lipschitz and relaxed monotone mappings, J. Optim. Theory Appl.114 (2002), no. 3, 639–656. https://doi.org/10.1023/A:1016079130417
  8. Z. Liu, Resolvent equations technique for general variational inclusions, Proc. JapanAcad. Ser. A Math. Sci. 78 (2002), no. 10, 188–193. https://doi.org/10.3792/pjaa.78.188
  9. N. Q. Nga, Set-valued nonlinear variational inequalities for H-monotone mappings innonreflexive Banach spaces, Nonlinear Anal. 52 (2003), no. 2, 457–465. https://doi.org/10.1016/S0362-546X(02)00109-8
  10. L. U. Uko, Strongly nonlinear generalized equations, J. Math. Anal. Appl. 220 (1998),no. 1, 65–76. https://doi.org/10.1006/jmaa.1997.5796
  11. L. C. Zeng, S. M. Guo, and J. C. Yao, Iterative algorithm for completely generalizedset-valued strongly nonlinear mixed variational-like inequalities, Comput. Math. Appl.50 (2005), no. 5-6, 935–945. https://doi.org/10.1016/j.camwa.2004.12.017