• Title/Summary/Keyword: nonparametric statistic

Search Result 82, Processing Time 0.02 seconds

A STUDY ON A NONPARAMETRIC TEST FOR THE PARALLELISM OF k REGRESSION LINES AGAINST ORDERED ALTERNATIVES

  • Jee, Eun-Sook
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.2
    • /
    • pp.669-682
    • /
    • 2001
  • In this paper a nonparametric test for the parallelism of k regression lines against ordered alternatives, when the independent variables are positive and all regression lines have a common intercept is proposed. The proposed test is based on a Jonckheere-type statistic applied to residuals. Under some conditions the proposed test statistic is asymptotically distribution-free. The small-sample powers of our test are compared with other tests by a Monte Carlo study. The simulation results show that the proposed test has significantly higher empirical powers than the other tests considered in this paper.

Data-Driven Smooth Goodness of Fit Test by Nonparametric Function Estimation

  • Kim, Jongtae
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.811-816
    • /
    • 2000
  • The purpose of this paper is to study of data-driven smoothing goodness of it test, when the hypothesis is complete. The smoothing goodness of fit test statistic by nonparametric function estimation techniques is proposed in this paper. The results of simulation studies for he powers of show that the proposed test statistic compared well to other.

  • PDF

Nonparametric Granger Causality Test

  • Jeong, Ki-ho;Nishiyama, Yoshihiko
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.1
    • /
    • pp.195-210
    • /
    • 2007
  • This paper develops a consistent nonparametric test for Granger causality in the context of strong-mixing process, which covers a large class of stationary processes including ARMA and ARCH models. The previously proposed tests require absolute regularity ($\beta$-mixing) more stringent than the strong-mixing condition. We prove the consistency of the test under a high level assumption on the approximation error of U statistic by its projection. Due to the sample splitting, the test statistic we propose is asymptotically normally distributed under the null.

  • PDF

A nonparametric test for parallelism of regression lines against ordered alternatives (회귀직선 기울기의 순서성에 대한 비모수적 검정법)

  • 송문섭;이기훈;김순옥
    • The Korean Journal of Applied Statistics
    • /
    • v.6 no.2
    • /
    • pp.401-408
    • /
    • 1993
  • This paper suggests a nonparametric test for the parallelism of several regression lines against ordered alternatives. The test statistic is an extension of the Potthoff statistic. The asymptotic variance of the proposed statistic is estimated by Bootstrap method. The proposed test are compared with the Adichie's parametric and nonparametric tests.

  • PDF

A Nonparametric Bootstrap Test and Estimation for Change

  • Kim, Jae-Hee
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.2
    • /
    • pp.443-457
    • /
    • 2007
  • This paper deals with the problem of testing the existence of change in mean and estimating the change-point using nonparametric bootstrap technique. A test statistic using Gombay and Horvath (1990)'s functional form is applied to derive a test statistic and nonparametric change-point estimator with bootstrapping idea. Achieved significance level of the test is calculated for the proposed test to show the evidence against the null hypothesis. MSE and percentiles of the bootstrap change-point estimators are given to show the distribution of the proposed estimator in simulation.

Statistical Bias and Inflated Variance in the Genehunter Nonparametric Linkage Test Statistic

  • Song, Hae-Hiang;Choi, Eun-Kyeong
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.2
    • /
    • pp.373-381
    • /
    • 2009
  • Evidence of linkage is expressed as a decreasing trend of the squared trait difference of two siblings with increasing identical by descent scores. In contrast to successes in the application of a parametric approach of Haseman-Elston regression, notably low powers are demonstrated in the nonparametric linkage analysis methods for complex traits and diseases with sib-pairs data. We report that the Genehunter nonparametric linkage statistic is biased and furthermore the variance formula that they used is an inflated one, and this is one reason for a low performance. Thus, we propose bias-corrected nonparametric linkage statistics. Simulation studies comparing our proposed nonparametric test statistics versus the existing test statistics suggest that the bias-corrected new nonparametric test statistics are more powerful and attains efficiencies close to that of Haseman-Elston regression.

A nonparametric sequential test based on observations in groups (집단관측치에 의한 비모수적 축차검정에 관한 연구)

  • 박창순
    • The Korean Journal of Applied Statistics
    • /
    • v.1 no.2
    • /
    • pp.66-81
    • /
    • 1987
  • A new nonparametric sequential testing procedure is proposed in the paper. Sequential observations are divided into equally sized groups and a nonparametric statistic, which is appropriate for testing the given hypotheses, is obtained from each group. Then Wald's sequential test is applied for the case where the log probability ratio statistic is replaced by the nonparametric statistic. The properties of such test are evaluated approximately by the Wiener process.

A Simple Nonparametric Test of Complete Independence

  • Park, Cheol-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.2
    • /
    • pp.411-416
    • /
    • 1998
  • A simple nonparametric test of complete or total independence is suggested for continuous multivariate distributions. This procedure first discretizes the original variables based on their order statistics, and then tests the hypothesis of complete independence for the resulting contingency table. Under the hypothesis of independence, the chi-squared test statistic has an asymptotic chi-squared distribution. We present a simulation study to illustrate the accuracy in finite samples of the limiting distribution of the test statistic. We compare our method to another nonparametric test of complete independence via a simulation study. Finally, we apply our method to the residuals from a real data set.

  • PDF

The Analysis of power of the Test Statistics for the Randomized Block Design (확률화 블록 실험계획 모형에서 검정 통계량들의 검정력 분석)

  • 배현웅;김제영
    • Journal of the military operations research society of Korea
    • /
    • v.27 no.2
    • /
    • pp.124-133
    • /
    • 2001
  • The purpose of this study is investigate the differences among parametric and nonparametric test statistics for the tree alternative hypothesis in the randomized block design. As the results, it was found that there was no large differences among parametric and nonparametric test statistics in power when the block sizes were larger, and Hollander's statistic had better power than other nonparametric test statistics. It is recommended that Hollander's test statistic is more useful method when we have no information about the distribution of population.

  • PDF

Asymptotic Distribution of a Nonparametric Multivariate Test Statistic for Independence

  • Um, Yong-Hwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.12 no.1
    • /
    • pp.135-142
    • /
    • 2001
  • A multivariate statistic based on interdirection is proposed for detecting dependence among many vectors. The asymptotic distribution of the proposed statistic is derived under the null hypothesis of independence. Also we find the asymptotic distribution under the alternatives contiguous to the null hypothesis, which is needed for later use of computing relative efficiencies.

  • PDF