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A Simple Nonparametric Test of Complete Independencev

Cheolyong Park?

Abstract

A simple nonparametric test of complete or total independence is suggested for
continuous multivariate distributions. This procedure first discretizes the original
variables based on their order statistics, and then tests the hypothesis of complete
independence for the resulting contingency table. Under the hypothesis of
independence, the chi-squared test statistic has an asymptotic chi-squared
distribution.

We present a simulation study to illustrate the accuracy in finite samples of the
limiting distribution of the test statisticc. We compare our method to another
nonparametric test of complete independence via a simulation study. Finally, we apply
our method to the residuals from a real data set.

1. Introduction

Let Y =(Y;,Yp,..Y,), i=1,2,..,n, be a random sample from a continuous

distribution function F(y), yeR’. We want to test the null hypothesis of complete or total
independence

Hy: F(31 ¥y ..., ¥p) = jI;'Ile(yj).V yeR", (1)

where F; is the ¢-th marginal distribution function of F'. Our primary interest is on the

multivariate case; ie. p=3. Several nonparametric tests of multivariate independence have
been suggested. Some tests are based on linear rank statistics (e.g., Puri, Sen and
Gokhale(1970) and Sinha and Wieand(1977) among others), on nonlinear rank statistics (e.g.,
Sirahata and Wakimoto(1984) among others), and on the empirical distribution or characteristic

function (e.g., Blum, Kieffer, and Rosenblatt(1961) and Csorgo (1985) among others). Except
for the tests based on linear rank statistics, most other tests are not so easy to compute or
their limiting distributions are not easily computable. The test statistics by Puri, Sen and
Gokhale(1970) essentially test pairwise independence. The test statistics by Sinha and
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Wieand(1977) test multivariate independence, are easy to compute for some cases, and are
asymptotically normal.

The objective of this study is to suggest a nonparametric test of complete independence,
which is easy to compute, is able to detect multivariate dependence (not just pairwise
dependence), and has a well-known limiting distribution. This procedure first discretizes the
original variables based on their order statistics and then tests the hypothesis of complete
independence for the resulting contingency table. It is shown by Park(1998) that, under the
null hypothesis, the chi-squared test statistic has an asymptotic chi-squared distribution. In
Section 2, we will present our method and its results in detail. In Section 3, we will present
a simulation study to show the accuracy in finite samples of the limiting distribution of the
test statistic and compare our method to another easy-to-compute test statistic of Sinha and
Wieand(1977) via a simulation study. Also we will apply our method to examine the residuals
from fitting a time series model to geyser data.

2. The Method and Its Results

We let Y=(Y,;) denote an nXp raw data matrix. The n rows of Y are a random
sample from a continuous multivariate distribution. We will refer to the columns of Y as
the ‘coordinates’ of Y.

We discretize the matrix Y to obtain an #Xp matrix 7 whose entries 7T, are all
integers in {1,2,...,d}. The discretization is applied separately to each of the coordinates of
Y. We utilize the sample quantiles of each coordinate to divide the values in each coordinate
into say, d categories with approximately equal size. In other words, the discretized matrix
T is given by

Ti=k ift(k—1)n/d<{R;<lkn/d, (2)
where R;; is the rank of Y; among Y ;, Yy,..., Y, .

We can form a contingency table from the # rows of the discretized matrix 7. This

contingency table contains @ cells corresponding to the possible p-tuples of integers in

{1,2,....,d}. We have # observations distributed among these d” cells. Under the null
hypothesis, the expected number of observations in any given cell is approximately equal to

n/d® (f d divides #» exactly, the expectation is exactly equal to n/d”). We use

x=(m,ny,...,my), with 1<m;<d for all i, to denote a particular cell in our table. For

each cell x, the cell count U, is defined by

Ue= 20T =m), (3)
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where T, is the i-th row of 7. This chi-squared test statistic is defined to be

=3 (U,,—nl{a"”)2
x n/ d

The test statistic tests the hypothesis of complete independence for the contingency table of
the cell counts. We note that all marginal sums of the table are fixed by the discretizing
scheme and that, under the hypothesis of independence, the distribution of the cell counts is

4)

equal to the conditional distribution of a multinomial given the marginals sums equal to the
fixed margins. Park(1998) has shown that, under the hypothesis, the limiting distribution of

X? is the chi-squared distribution with @’—1—p(d—1) degrees of freedom.

3. Simulation Studies and an Example

In this section, we present a simulation study to illustrate the behavior in finite samples of

the limiting distribution of X?. We then compare our method to a test statistic of Sinha and
Wieand(1977) via a simulation study with pairwise independence only. Finally, we apply our
method to the residuals from geyser data.

3.1 A Simulation Study on Limiting Distribution

It is well known that, under the null hypothesis, the distribution of the cell counts with all
margins fixed is equal to the conditional distribution of a multinomial given that the marginal
sums are equal to the fixed margins. Thus our method is nonparametric in the sense that it
does not depend on the continuous parent distribution. Thus we have chosen the multivariate
normal distribution to generate data sets.

To illustrate the accuracy of the limiting distribution of Xz, we take the number of
variables p to be four, and the number of categories d to be three. X% values are
computed from the contingency tables of the cell counts with d”=81 cells. The limiting

distribution of X? is the chi-squared distribution with 72 degrees of freedom. We consider
three sample sizes, #=81, 405, and 810, which are denoted as small, moderate, and large
samples, respectively. We note that average numbers of observations per cell are 1, 5, and 10
for small, moderate, and large samples, respectively.

For each sample size #, we generate 500 matrices Y whose entries are ii.d. standard

normal variates and calculate X? for each of them. The chi-squared probability plots for the
three sample sizes are given in Figure 1.
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Figure 1. Quantile-Quantile Plots for Small, Moderate, and Large Sample Cases
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In each plot, the order statistics (horizontal axis) are plotted against the quantiles of the

¥*(72) distribution (vertical axis) with a reference line having slope 1 and intercept O.
Examining the plots, we find that ali points fall quite near the reference line and so the
limiting distribution is a very good approximation even for the small sample case.

3.2 A Simulation Study With Pairwise Independence Only

Since the test statistics by Sinha and Wieand(1977) are for testing multivariate
independence and are easy to compute for some cases, we will compare our method to one of
their test statistics when observations are pairwise independent but are not completely
independent. The test statistic being compared to our method is the Spearman’s version

5=+ 3 T (Ry/m,

where R; is defined in (2). This statistic is quite easy to compute and has an asymptotic

normal distribution with mean 2 ? and variance (3 ~?—4 "?(p+3)/3)/n.
We generate three random variables with pairwise independence but without complete
independence in the following way; generate iid. standard normal random variables
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Xl,Xz,X;; and then put Y1=X1 y Y2=X2, and Y3= Slgn(X1X2)+X3 We put
d=3 for our method and consider five sample sizes, =27, 54, 81, 108, 135. Cur method
has an average of 1, 2, 3, 4, and 5 observations per cell, respectively. For each =, we

generate 200 matrices Y using the above scheme and compute the (asymptotic) p-values of
X? and S,,(’ ) for each of them. The number of samples among 200 within some ranges of

p-value are summarized in Table 1.

Table 1. Results of a Simulation Study with Pairwise Independence Only

range of p-value <.05 <.01 <.005 <.001 <.0001 <.00001
n=27 X2 42 13 3 5 0 0
S 93 46 30 14 5 3
n=>54 x? 104 36 26 10 1 0
S 104 52 40 19 7 3
n=_81 X2 144 96 80 40 11 3
S 100 55 42 24 8 1
n=108 x? 190 142 125 69 37 10
S 125 72 57 28 10 3
n=135 x? 199 178 166 131 73 34
S n(P)' 138 % - 74 41 12 4

Examining the table, we find that S,,(”) is better for small samples like #=24, 54 and
our method is better for large samples like »==81, 108, 135. Also we find that, as the
sample size becomes larger, the power of our test increases a lot whereas that of S,,(p ) does

not increase so much.
3.3 An Example Using Geyser Data

In this example, we apply our method to examine the residuals from a fitted model. If a
model is correctly chosen, the residuals from the fitted model will be approximately
independent. Our method can be used to examine the residuals since it detects the remaining
dependence among them. There are two time series available in geyser data and the
waiting time between eruptions is used for our example (see Azzalini and Bowman(1990) for
details).

The time series plot of the waiting time reveals nothing very unusual and we try to fit a
time series model to the data. We use an automatic procedure called AR in S-Plus to find
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one of the ‘best’ autoregressive models. The procedure used the Akaike information criterion
to choose the order of the model. We also use the Yule-Walker equations to estimate the
autoregression coefficients. This procedure chooses an AR(2) model. The time series plot for
the residuals from AR(2) model does not show any unusual pattern. Both autocorrelation and
partial autocorrelation functions up to 25 lags are well inside the error bars.

Now we examine the residuals using our approach. We divide the residuals into subseries
of three consecutive residuals and take each subseries as an observation. In this way, we

obtain a 99x3 data matrix Y. Our method with d=3 leads to X°?=32.73 with
(asymptotic) p-value 0.036. This p-value gives a warning signal that the residuals might
have some dependence. However, the Spearman’s version of Sinha and Wieand(1977) gives an
(asymptotic) p-value over 0.6 and absolute values of all rank correlations are less than 0.1.
Now we further examine the residuals using the lagged plots. The ‘lag 1’ plot shows a

slight tendency that the variance of the residual e; at time ¢ increases with the value of

the residual ¢,.; at time f—1.
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