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Abstract

Evidence of linkage is expressed as a decreasing trend of the squared trait difference of two siblings with
increasing identical by descent scores. In contrast to successes in the application of a parametric approach of
Haseman-Elston regression, notably low powers are demonstrated in the nonparametric linkage analysis methods
for complex traits and diseases with sib-pairs data. We report that the Genehunter nonparametric linkage statistic
is biased and furthermore the variance formula that they used is an inflated one, and this is one reason for a low
performance. Thus, we propose bias-corrected nonparametric linkage statistics. Simulation studies comparing
our proposed nonparametric test statistics versus the existing test statistics suggest that the bias-corrected new
nonparametric test statistics are more powerful and attains efficiencies close to that of Haseman-Elston regression.
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1. Introduction

Previously there have been spectacular successes in the application of parametric linkage analysis
to monogenic traits and diseases of cystic fibrosis and neurofibromatosis, but unsuccessful outcomes
have been noted in the application of nonparametric linkage(NPL) analyses to complex traits and
diseases, such as hypertension, diabetes mellitus and psychiatric disorders. This lack of success led
some researchers to re-examine the NPL approach, because they believe that if the problems of NPL
approach are identifiable, it can potentially be corrected. Schork and Greenwood (2004a) pinpointed
a source of bias during data compilation; that is, keeping the sib or relative pairs data whose alleles
shared identical by decent(IBD) are uncertain and thus assigning the expected IBD values to these
cases will produce bias. In response to Schork and Greenwood (2004a) paper, there have been much
debates subsequently (Mukhopadhyay ez al., 2004; Visscher and Wray, 2004; Sieberts et al., 2004;
Abecasis et al., 2004; Schork and Greenwood, 2004b). On the other hand, a large-scale simulation
study conducted by Davis and Weeks (1997), on the analysis methods and software packages so
far developed, is helpful to recognize in a concrete way the degree of problems of the NPL statistic.
Davis and Weeks (1997) have found that, while the Haseman-Elston (1972) method is powerful for all
situations and also with different data sets of sib-pairs, the Genehunter NPL statistic of Kruglyak and
Lander (1995) have surprisingly low powers, being placed in the lowest quartile in power rankings.
In this report, we give a conclusive proof of the statistical bias of the Genehunter NPL statistic
of Kruglyak and Lander (1995) under the assumption that the information of alleles shared IBD in
sib-pairs is known with certainty, and we demonstrate further that their variance estimate is not the
minimal one. Thus, we are led to propose more precise variance estimate than that Kruglyak and
Lander (1995) have suggested. In certain cases, biased test statistics are preferred because, despite of
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possessing an undesirable property of being biased, the test statistic may demonstrate better overall
performance compared to the unbiased test statistic with a smaller variance. However, this is the not
case with the Genehunter NPL statistic which has both statistical bias and inflated variance, and that
certainly affected negatively on the performance, even if the sources of bias mentioned by Schork and
Greenwood (2004a) and other researchers are absent.

2. Methods

Suppose that we have a sample of  independent sib-pairs and we assume random mating, linkage
equilibrium, and no epistasis. We will restrict to a single point situation, which is enough for the
purpose of comparing the powers of several linkage test statistics. The Haseman-Elston regression,
the commonly used linkage analysis method in sib pair studies is based on the value of squared trait
difference y; = (x;; —.xp)* as a dependent variable, where x;; and x, are the trait values of each
sib within sib-pair i (i = 1,...,n), and the number of alleles shared IBD at a marker locus as an
independent variable. On the other hand, the NPL statistic is based on ranks of all values of the
squared trait difference y}s. In the notation of Kruglyak and Lander (1995), the rank of y; is denoted
by rank(i). The Genehunter NPL statistic is defined as Xyp;, = 2, rank(i) X f(v;), where f(v;) is
a simple function (chosen to have expected value 0) of v;, the number of alleles shared IBD by two
siblings at the locus of interest. Thus, under the assumption that there is complete genetic information,
each sib-pair shares 0, 1, or 2 alleles IBD. In the absence of dominance effects, for example, Kruglyak
and Lander (1995) suggested f(0) = —1, f(1) = O and f(2) = 1. As a result of this particular
function chosen, this intuitive nonparametric NPL statistic resembles to testing a linear relationship in
the Haseman-Elston regression. In other words, the NPL statistic is basically R; — Ry, the difference of
rank sums, where R, and Ry is the observed rank sum of sib-pairs belonging to the IBD group of score
2 and 0, respectively, in the joint ordering of all n values of the squared trait differences of sib-pairs.

2.1. Expectation and variance of the Genehunter NPL statistic

Kruglyak and Lander (1995) stated that, in the absence of linkage, the statistic Xyp;, has expectation
0 and variance Vypr = n(n + 1)(2n + 1)/12. Thus they proposed Zypz = Xwpr/ VVwpr as a test
statistic, which is asymptotically distributed as a standard normal; significance is determined by a
one-sided testing of Zyp; < 0 that matches with a negative slope in the Haseman-Elston regression, in
which a decreasing squared trait difference of two siblings with increasing IBD scores is considered
as evidence of linkage. The authors stated that Xyp; is equivalent up to rescaling to the two-sample
Wilcoxon rank sum statistic.

2.2. Expectation and variance of the new NPL statistic

We now derive the expectation and variance in a new approach. The rank sum R; and Ry in the NPL
statistic is obtained from the joint ordering of n squared trait differences of sib-pairs, even if only
difference of two rank sums appears in the statistic. Therefore, we have to rely on the formulas of
expectations, variances and covariances of the rank sums for more than two groups. For the case of
three IBD groups in the sib-pair linkage study, when ng, n; and n, are the observed number of sib
pairs in each IBD group of score 0, 1 and 2, respectively, with n = ng +n; +n,, Hettmansperger (1984,
p.180) provided the formulas: E(R;) = n;(n + 1)/2, var(R;) = nin — n;(n + 1))/12 and cov(Ri, R;) =
—mnjn+1)/12,fori = 0, 1, 2. Thus, the difference of rank sums has the following expectation and
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variance:
ny—ng)n+1
E(Ry - Ry) = 345——135————2, 2.1)
(n+ 1) {n(n + no) — (2 — noy?}
var(Ry — Ry) = . 2.2)
12
The new NPL test is then based on
Zyon Ry~ Ry —(np —no)(n +1)/2 2.3)

Vo D) [l + o) — (3 - 0’} /12

which may be referred to a table of the standard normal distribution if n is large. Under random
sampling, the proportion of sib-pairs sharing 0, 1 and 2 alleles IBD is assumed to be approximately
equal to 1/4, 1/2 and 1/4 and this relationship is used in many situations, particularly in sample size
calculations in the planning stage of a linkage study. However, we have to remind ourselves that this
is just an approximation and, in the application of linkage analysis to a sample of observed data, this
condition is seldom satisfied. The two IBD groups can be of quite different sizes. When the numbers
of sib-pairs in the two IBD groups differ, the expectation has non-zero value and its magnitude is
non-ignorable if the total number of sib-pairs is large. We have come across biomedical researchers
who believe that the condition of no linkage (more precisely under no genetic effect) naturally imply
that the two IBD groups of score 0 and 2 have always equal numbers of sib-pairs, which is not true.
Different interpretations of the null hypothesis in the linkage analysis, that is, hypothesis of no linkage
are presented in Hadicke er al. (2008), and neither of these hypotheses implies that the sample sizes
of the two IBD groups are equal. They are assumed to be equal, out of computational convenience, in
the demonstration of an example or simulations.

The magnitude of variance is also important in determining test efficiencies. Notice that the vari-
ance Vypp given by Kruglyak and Lander (1995) is a function only of the total number n of sib-pairs
in a sample, while the variance of the new NPL statistic is a function of ng and n,, in addition to #.
Therefore, when the two variances are compared under the sample sizes of ng = ny = m, ny = 2m,
the variance of the new NPL statistic is var(R, — Ry) = n(n + 1)(2m)/12, while that of Xypy is
Vner = n(n + 1)(8m + 1)/12, and thus Vyp; is roughly four times larger than the variance estimate
used in the new NPL statistic. Furthermore, Vyp; would be much larger than four times if ny # n,.

Notice that the variance of Xyp;, which is Vypr, = n(r + 1)(2n + 1)/12, is in fact the expected
variance under the assumption of no linkage, not the one which is estimated each time differently
for a sample of observed data. In other words, based on the fact that Kruglyak and Lander (1995)
have considered that the expected value of Xyp; is 0, and that the two IBD groups of score 0 and 2
approximately involve only a half of all sib-pairs, the expected variance of Xyp; would be identical to

n(n+ DH2n + 1)

var(Xypr) = E(XIZVPL) = % Z = 12

i=1

(2.4)

We understood in this way how the variance of Xyp; is derived. In summary, non-ignorable magnitude
in the variance reduction and bias correction in the new NPL statistic are expected to lead to possible
improvements in power over the Genehunter NPL statistic. We will examine with a simulation study
in which situations this new NPL statistic is powerful and also robust compared to the Genehuneter
NPL statistic.
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2.3. Extension of the NPL statistic

Several other rank-based test statistics can be derived in the process of proposing the new NPL statis-
tic. One of the closest variant of new NPL statistic is to construct a test statistic based on the observed
rank averages rather than rank sums in each IBD groups. When the discrepancy between ng and n,
is large, rank averages may differ from rank sums. The rank average is defined as R; = R;/n;, where
R; is the rank sum of the IBD group of score i (i = 0, 1,2) with a sample size n;. The expectations,
variances and covariances of the rank averages for more than two groups, are easily derived using
the formulas found in Hettmansperger (1984): E(R;) = (n + 1)/2, var(R;) = (n — n))(n + 1)/12n; and
cov(R;, R ) = —(n+ 1)/12. Under the null hypothesis of no linkage, the expectation of a difference of
two rank averages, R, — Ry, is 0, and the variance is equal to

oy nm+D(1 1
var (Ry = Ro) = > (%g;;). (2.5)

Thus, the ratio Z4,. = (Ry = Rg)/ v/var(R, — Ry) is asymptotically standard normally distributed and
linkage testing is done similarly as above.

Other nonparametric statistic is worth mentioning due to its close nature of a decreasing trend
alternative. Terpstra (1952) and Jonckheere (1954) independently proposed a test for the ordered
alternative which is based on two-sample Wilcoson statistics. Jonckheere-Terpstra trend statistic has
the attractive feature that it is based on separate ranking of different pairs of two groups each, ie.,
comparing the two groups of IBD 0 and 1, IBD 1 and 2, and IBD 0 and 2, instead of ranking the
observations in all three groups. A detailed description of the Jonckheere-Terpstra trend statistic in
linkage testing can be found in Kim ez al. (2006).

3. Simulation Studies

A simulation study was undertaken to compare the performance of the Genehunter NPL statistic Zypr
with the test statistics mentioned above, in which the new NPL statistic Zy,,, the rank average-based
statistic Zy,, the Jonckheere-Terpstra trend statistic, and finally the Haseman-Elston regression on
raw data are included. Following Haseman and Elston (1972), consider a quantitative trait locus with
two alleles B and b with population frequency p and ¢ = 1 ~ p, respectively. For m" individual in
a pair, it is assumed that a trait value x,, follow a linear model x,, = u + gp + €, Where m = 1 or 2
with an arbitrary ordering; y is the overall mean, g, is the genetic effect of the trait locus and e,, is
the residual effect. And, g,, and e, are stochastically independent and ¢ = e; — e, has mean 0 and
variance 0. The difference in residuals for different sib-pairs, that is, ¢’s are mutually independent,
but e; and e, of a sib-pair are correlated. Define g,, = a, if genotype of the m™ member of a sib-pair
at quantitative trait locus is BB, d if it is Bb, and —a if it is bb. A genetic model is recessive if d = —a,
and additive if d = 0, and dominant if d = a with —~a < d < a. The genetic variance aﬁ due to
the trait locus is given by 02 = o2 + 0% with o2 = 2pgla — d(p — ¢)}* and 0% = (2pqd)* are the
additive and dominance variance, respectively. The broad sense trait locus heritability 42 is defined as
R = a3 /(s + 02).

We adopted the simulation plans of Kim ez al. (2006); 2,000 replicates with 200 and 500 sib-pairs
per replicate were generated under additive, dominant and recessive genetic models for empirical
powers and 5,000 replicates were generated to obtain empirical type I error rates. The simulations
with zero heritability 4> = 0 or equivalently 0'§ = 0, implying no differences among trait distribu-
tions of three IBD groups, correspond to the null hypothesis. The simulations steps were: first, we
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Table 1: Empirical type I error rates with 5,000 replicates for a completely informative marker at the trait locus
at nominal @ = 0.05 level under normal, contaminated normal and lognormal residual distributions. The residual
correlation is 0.5 and allele frequency p at the diallelic trait locus varied with the genetic model. JT corresponds
to the type I error rates with the Jonckheere-Terpstra trend statistic and HE to the type I error rates with
Haseman-Elston regression on raw trait values.

Residual n =200 n =500

distribution P ZNpPL ZNew ZAve JT HE ZNpPL ZNew Zave JT HE
0.1 0.050 0.051 0.052 0.052 0.044 0.045 0.055 0055 0.054 0.060
Normal 0.3 0.051 0.048 0.050 0.047 0.046 0.047 0.049 0.049 0.048 0.048
0.5 0.046 0.052 0.053 0.051 0.057 0.048 0.047 0.047 0.047 0.058

Contaminated 0.1 0.048 0.055 0.056 0.056 0.057 0.050 0.054 0055 0.055 0.051
normal 0.3 0.048 0.047 0048 0.048 0.051 0.045 0.043 0.042 0.042 0.055
0.5 0.048 0.051 0053 0.051 0.058 0.053 0.049 0.050 0.050 0.052
0.1 0.050  0.051 0.051 0.050 0.049 0.051 0.042 0.043 0.042 0.054

Lognormal 0.3 0.048 0.048 0.047 0.047 0.046 0.058 0.051 0.051 0.052 0.047
0.5 0.048 0.050 0.049 0.050 0.044 0.055 0.053 0.052 0.052 0.040

generated the trait IBD scores of sib-pairs by use of a trinomial random number generator with cell
probabilities of 1/4, 1/2 and 1/4, respectively. Secondly, we generated the trait genotypes of the sib-
pairs from a multinomial distribution, with cell probabilities given by the conditional probabilities of
the generated trait IBD scores, given the trait genotypic pair (given in Table 1 of Haseman and Elston
(1972)). Thirdly, the trait residual values for sib 1 and sib 2, each had the same marginal distribution
with a specified residual sibling correlation of (.5, were simulated from the following distributions:
symmetric trait distributions of normal and contaminated normal and asymmetric trait distribution of
lognormal (Fernandez er al., 2002). The contaminated normal and lognormal distributions are exam-
ples for which there exists intrinsic non-normality in the trait distributions. The contaminated normal
distribution of trait residuals is generated by e ~ (1 — ¢)N(0, 02) + cN(6, (fo.)*), where 0 < ¢ < 1.
When ¢ # 0, each error term is a random observation from either a N(0, o) distribution with proba-
bility 1 — ¢ or a N(6, (fo.)?) distribution with probability c. The values of ¢ were chosen to be 0.025
in our simulations, and o2 was set to equal 1. The probability model with 6 =0, ¢ > Oand f = Sisa
popular non-normal distribution in the literature. In our simulated data, the contaminated normal dis-
‘tribution with ¢ = 0.025 has a skewness of approximately 0.3 and kurtosis of approximately 15. Under
various genetic models, the genetic effect a is determined for a given heritability 4%. Heritability h?
takes the values of 0, and 0.1, 0.2, 0.5.

The observed type I errors, given in Table 1, agree reasonably well with nominal value of @ = 0.05,
and thus all tests are comparable in the tail region for symmetric and asymmetric trait residual distri-
butions. Non-normality of the distribution of trait values can influence the power of various linkage
tests. When the residuals of individual trait values are normally distributed, the observed empirical
powers of the HE regression are substantially higher compared to other nonparametric linkage tests
based on ranks, regardless of the inheritance models (Table 2, 3 and 4). However, for non-normal trait
residual distributions of contaminated normal and lognormal that are considered in our simulations,
the rank-based nonparametric linkage tests are more efficient. Since the rank average-based statis-
tic Z4y. and the Jonckheere-Terpstra trend statistic demonstrate almost equivalent power levels to the
new NPL statistic, the power results of these two tests are not presented in the tables. Genehuner
NPL statistic demonstrates low powers than the new NPL statistic throughout all situations of genetic
models, heritability, population disease allele frequency, and sample sizes of sib-pairs (Table 2, 3 and
4).

The power increases for all tests with the heritability and with increasing sample size from 200
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Table 2: Empirical power to detect a quantitative trait locus under additive models with 2,000 replicates for a
completely informative marker at the trait locus at nominal @ = 0.05 level. Normal, contaminated normal and
lognormal residual distributions, with the residual correlation is 0.5, were generated and allele frequency p at
the diallelic trait locus varied with the genetic model. HE corresponds to the power with Haseman-Elston
regression on raw trait values.

Residual X n =200 n = 500
distribution P ZypL ZNew Zave ZypL ZNew Zpve
0.1 0.091 0.132 0.172 0.121 0.203 0.277
0.1 03 0.194 0.438 0.623 0.309 0.762 0.945
0.5 0.306 0.722 0.934 0.556 0.975 1.000
0.1 0.097 0.143 0179 0.109 0.231 0.316
Normal 0.3 0.3 0.233 0.522 0.689 0.370 0.865 0.957
0.5 0.437 0.911 0.976 0.756 1.000 1.000
0.1 0.077 0.133 0.167 0.109 0.223 0.294
0.5 0.3 0.233 0.563 0.699 0.387 0.874 0.958
0.5 0.448 0.931 0.984 0780 . 1.000 1.000
0.1 0.073 0.119 0.077 : 0.093 0.190 0.086
0.1 03 0.159 0.401 0.204 0.291 0.690 0.259
0.5 0.284 0.684 0.415 0.507 0.9355 0.628
Contaminated 0.1 0.084 0.130 0.086 0.110 0.207 0.088
normal 0.3 0.3 0.195 0.493 0.195 0.349 0.814 0.250
0.5 0.392 0.862 0451 0.723 0.997 0.639
0.1 0.094 0.127 0.087 0.108 0.204 0.089
0.5 0.3 0.178 0.495 0.192 0.363 0.808 0.251
0.5 0.419 0.902 0.444 0.727 0.999 0.647
0.1 0.070 0.104 0.077 0.099 0.152 0.109
0.1 03 0.127 0.245 0.121 0.186 0.448 0.152
0.5 0.151 0.380 0.102 0.291 0.703 0.127
0.1 0.075 0.101 0.072 0.091 0.147 0.084
Lognormal 0.3 03 0.145 0.304 0.115 0.234 0.587 0.150
0.5 0.228 0.587 0.148 0.443 0.902 0.188
0.1 0.065 0.102 0.067 0.090 0.144 0.074
0.5 0.3 0.136 0.316 0.111 0.234 0.582 0.138
0.5 0.233 0.589 0.148 0.444 0.922 0.202

to 500. The rate of gaining power as sample size increases is slightly faster for HE regression under
normally distributed residuals, but on the contrary this rate is faster for the new NPL statistic under
non-normal trait distributions. From the results of simulations, shown in Table 2, 3 and 4, we conclude
that the HE regression outperform for normally distributed residuals, but they are not as powerful as
nonparametric trend tests for non-normal trait distributions, especially for high heritability and for
lognormal distributed residuals. For a small addition, 2.5%, of highly dispersed normal to the standard
normat distribution of trait residuals, the higher efficiency of the HE regression, holds only for a rare
allele with p = 0.1 or 0.3 under the recessive model, or conversely for p = 0.7 (or 0.9 whose results
are not shown) under the dominant model; otherwise, the observed power of the new NPL statistic is
higher.

4. Discussion

One of the commonly used Genehunter NPL statistic for sib-pair linkage analysis is re-examined in
this report. We wish to make some points clear: First of all, the Genehunter NPL statistic is not
a Wilcoxon statistic, since Wilcoxon statistic is defined for a two-group situation and is expressed
by a rank sum of a group, when the ranks are obtained from the joint ordering of observations of
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Table 3: Empirical power to detect a quantitative trait locus under dominance models with 2,000 replicates for a
completely informative marker at the trait locus at nominal & = 0.05 level. Normal, contaminated normal and
lognormal residual distributions, with the residual correlation is 0.5, were generated and allele frequency p at
the diallelic trait locus varied with the genetic model. HE corresponds to the power with Haseman-Elston

regression on raw trait values.

Residual W n =200 n =500
distribution P Znpr INew Zave ZynpL LNew Zave
0.1 0.093 0.148 0.175 0.105 0.205 0.302
0.1 0.3 0.195 0.454 0.644 0.335 0.787 0.947
N 0.5 0.301 0.740 0.941 0.561 0.979 1.000

ormal

0.1 0.079 0.137 0.159 0.124 0.227 0.300
0.3 0.3 0.216 0.569 0.649 0.417 0.882 0.959
0.5 0.460 0.939 0.971 0.787 1.000 1.000
0.1 0.091 0.122 0.075 0.120 0.201 0.094
0.1 0.3 0.164 0.416 0.204 0.305 0.733 0.260
Contaminated 0.5 0.292 0.694 0.441 0.520 0.961 0.628
normal 0.1 0.076 0.118 0.074 0.107 0.219 0.086
0.3 0.3 0.204 0.502 0.196 0.367 0.849 0.261
0.5 0.427 0.897 0.447 0.718 1.000 0.651
0.1 0.077 0.103 0.081 0.091 0.142 0.090
0.1 0.3 0.126 0.256 0.119 0.206 0.507 0.173
Lognormal 0.5 0.173 0.384 0.168 0.298 0.725 0.234
0.1 0.079 0.101 0.066 0.106 0.156 0.075
0.3 0.3 0.159 0.349 0.093 0.245 0.613 0.125
0.5 0.254 0.655 0.141 0.449 0.930 0.178

Table 4: Empirical power to detect a quantitative trait locus under recessive models with 2,000 replicates for a
completely informative marker at the trait locus at nominal « = 0.05 level. Normal, contaminated normal and

lognormal residual distributions, with the residual correlation is 0.5, were generated and allele frequency p at

the diallelic trait locus varied with the genetic model. HE corresponds to the power with Haseman-Elston

regression on raw trait values.

Residual 2 n =200 n =500
distribution P ZnpPL ZNew Zave ZnpL ZNew Zave
0.1 0.091 0.138 0.162 0.106 0.211 0.284
0.5 0.3 0.194 0.512 0.624 0.361 0.843 0.939
Normal 0.5 0.372 0.842 0.940 0.668 0.998 1.000
0.1 0.078 0.144 0.172 0.108 0.221 0.286
0.7 0.3 0.230 0.559 0.665 0.403 0.890 0.954
0.5 0.463 0.935 0.971 0.791 1.000 1.000
0.1 0.079 0.123 0.076 0.113 0.209 0.088
0.5 0.3 0.180 0.449 0.203 0.335 0.779 0.243
Contaminated 0.5 0.320 0.786 0.422 0.611 0.987 0.614
normal 0.1 0.075 0.136 0.078 0.105 0.184 0.079
0.7 0.3 0.201 0.513 0.205 0.384 0.843 0.242
0.5 0.418 0.906 0.433 0.732 0.999 0.639
0.1 0.070 0.105 0.071 0.096 0.144 0.081
0.5 0.3 0.142 0.301 0.127 0.204 0.540 0.160
Lognormal 0.5 0.203 0.492 0.159 0.344 0.827 0.218
0.1 0.076 0.116 0.061 0.090 0.157 0.082
0.7 0.3 0.161 0.325 0.103 0.254 0.605 0.127
0.5 0.255 0.641 0.160 0.483 0.941 0.185

two groups. But, the ranks of the NPL statistic are virtually derived from the observations of three
IBD groups of score 0, 1 and 2, even though only the ranks of two IBD groups of score 0 and 2
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appear in Xypr.. Secondly, it is evident that the new NPL statistic, obtained with correction of the bias
in the Genehunter NPL statistic and use of a more appropriate variance estimate, enhanced the test
performance. Thirdly, another support for the appropriateness of the use of observation-dependent
expectation and more precise variance in the new NPL statistic is that it demonstrates almost equiv-
alent powers to the well-known Jonckheere-Terpstra trend statistic. We have compared the power of
the Haseman-Elston regression on raw data while other tests are all based on ranks. In order to match
with the nonparametric settings we have also examined the Haseman-Elston regression on ranked
data, whose results are not presented in the table, and, interestingly, our simulation revealed that
the Haseman-Elston regression with ranked data resulted almost equivalent powers to the new NPL
statistic for non-normal trait distributions.

The problems of bias and inflated variance discussed in this report for the Genehuner NPL statistic
also apply to a multipoint testing situation. Therefore, we believe that many software programs that
handle nonparametric multipoint statistical procedures for sib-pair linkage analysis may need further
evaluation in the future.
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