• Title/Summary/Keyword: nonlinear system, nonautonomous

Search Result 25, Processing Time 0.031 seconds

BOUNDEDNESS IN NONLINEAR PERTURBED DIFFERENTIAL SYSTEMS VIA t-SIMILARITY

  • Im, Dong Man;Goo, Yoon Hoe
    • Korean Journal of Mathematics
    • /
    • v.24 no.4
    • /
    • pp.723-736
    • /
    • 2016
  • This paper shows that the solutions to nonlinear perturbed differential system $$y^{\prime}= f(t,y)+{\int_{t_{0}}^{t}g(s,y(s))ds+h(t,y(t),Ty(t))$$ have bounded properties. To show the bounded properties, we impose conditions on the perturbed part ${\int_{t_{0}}^{t}g(s,y(s))ds,\;h(t, y(t),\;Ty(t))$, and on the fundamental matrix of the unperturbed system y' = f(t, y) using the notion of h-stability.

ASYMPTOTIC PROPERTY FOR NONLINEAR PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS

  • Im, Dong Man;Goo, Yoon Hoe
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • This paper shows that the solutions to nonlinear perturbed functional differential system $$y^{\prime}=f(t,y)+{\int}^t_{t_0}g(s,y(s),Ty(s))ds+h(t,y(t))$$ have the asymptotic property by imposing conditions on the perturbed part ${\int}^t_{t_0}g(s,y(s),Ty(s))ds,h(t,y(t))$ and on the fundamental matrix of the unperturbed system y' = f(t, y).

BOUNDEDNESS FOR NONLINEAR PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS VIA t-SIMILARITY

  • Im, Dong Man
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.585-598
    • /
    • 2016
  • This paper shows that the solutions to the nonlinear perturbed differential system $$y^{\prime}=f(t,y)+{\int_{t_0}^{t}}g(s,y(s),T_1y(s))ds+h(t,y(t),T_2y(t))$$, have bounded properties. To show these properties, we impose conditions on the perturbed part ${\int_{t_0}^{t}}g(s,y(s),T_1y(s))ds,h(t,y(t),T_2y(t))$, and on the fundamental matrix of the unperturbed system y' = f(t, y) using the notion of h-stability.

BOUNDEDNESS IN THE NONLINEAR PERTURBED DIFFERENTIAL SYSTEMS VIA t-SIMILARITY

  • GOO, YOON HOE
    • The Pure and Applied Mathematics
    • /
    • v.23 no.2
    • /
    • pp.105-117
    • /
    • 2016
  • This paper shows that the solutions to the nonlinear perturbed differential system $y{\prime}=f(t,y)+\int_{t_0}^{t}g(s,y(s),T_1y(s))ds+h(t,y(t),T_2y(t))$, have the bounded property by imposing conditions on the perturbed part $\int_{t_0}^{t}g(s,y(s),T_1y(s))ds,h(t,y(t),T_2y(t))$, and on the fundamental matrix of the unperturbed system y′ = f(t, y) using the notion of h-stability.

STABILITIES IN DIFFERENTIAL SYSTEMS

  • Park, Sung-Kyu
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.579-591
    • /
    • 1994
  • We consider the nonlinear nonautonomous differential system $$(1) x' = f(t,x), x(t_0) = x_0,$$ where $f \in C(R^+ \times R^n, R^n)$ and $R^+ = [0, \infty}$. We assume that the Jacobian matrix $f_x = \partail f/\partial x$ exists and is continuous on $R^+ \times R^n$ and that $f(t,0) \equiv 0$. The symbol $$\mid$\cdot$\mid$$ denotes arbitary norm in $R^n$.

  • PDF