DOI QR코드

DOI QR Code

BOUNDEDNESS IN PERTURBED DIFFERENTIAL SYSTEMS

  • Goo, Yoon-Hoe (Department of Mathematics, Hanseo University) ;
  • Park, Dong-Gon (Department of Mathematics, Hanseo University) ;
  • Ryu, Dae-Hee (Department of Computer Science, Chungwon University)
  • Received : 2011.10.10
  • Accepted : 2011.11.21
  • Published : 2012.01.30

Abstract

In this paper, we investigate bounds for solutions of the nonlinear differential systems using the notion of $t_{\infty}$-similarity.

Keywords

References

  1. V. M. Alekseev, An estimate for the perturbations of the solutions of ordinary differential equations, Vestn. Mosk. Univ. Ser. I. Math. Mech., Vol. 2(1961), 28-36.
  2. S. K. Choi and N. J. Koo, h-stability for nonlinear perturbed systems, Ann. of Diff. Eqs. Vol. 11(1995), 1-9.
  3. S. K. Choi and H. S. Ryu, h-stability in differential systems, Bull. Inst. Math. Acad. Sinica Vol. 21(1993), 245-262.
  4. S. K. Choi, N. J. Koo and S. M. Song, Stabilities for nonlinear functional differential equations, J. Chungcheong Math. Soc. Vol. 9(1996), 165-174.
  5. S. K. Choi, N. J. Koo and H. S. Ryu, h-stability of differential systems via $t_{\infty}$-similarity, Bull. Korean. Math. Soc. Vol. 34(1997), 371-383.
  6. S. K. Choi, N. J. Koo and S. M. Song, Lipschitz stability for nonlinear functional differential systems, Far East J. Math. Sci(FJMS)I Vol. 5(1999), 689-708.
  7. R. Conti, Sulla $t_{\infty}$-similitudine tra matricie l'equivalenza asintotica dei sistemi differenziali lineari, Rivista di Mat. Univ. Parma Vol. 8(1957), 43-47.
  8. S. Elaydi and R. R. M. Rao, Lipschitz stability for nonlinear Volterra integro-differential systems, Appl. Math. Computations Vol. 27(1988), 191-199. https://doi.org/10.1016/0096-3003(88)90001-X
  9. Y. H. Goo, h-stability of the nonlinear differential systems via $t_{\infty}$-similarity, J. Chungcheong Math. Soc. Vol. 23(2010), No.2, 383-389.
  10. Y. H. Goo and D. H. Ry, h-stability of the nonlinear perturbed differential systems, J. Chungcheong Math. Soc. Vol. 23(2010), No.4, 827-834.
  11. G. A. Hewer, Stability properties of the equation by $t_{\infty}$-similarity, J. Math. Anal. Appl. Vol. 41(1973), 336-344. https://doi.org/10.1016/0022-247X(73)90209-6
  12. V. Lakshmikantham and S. Leela, Differential and Integral Inequalities: Theory and Applications Vol. I, Academic Press, New York and London, 1969.
  13. M. Pinto, Perturbations of asymptotically stable differential systems, Analysis Vol. 4(1984), 161-175.
  14. M. Pinto, Stability of nonlinear differential systems, Applicable Analysis Vol. 43(1992), 1-20. https://doi.org/10.1080/00036819208840049