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BOUNDEDNESS IN PERTURBED DIFFERENTIAL SYSTEMS†
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Abstract. In this paper, we investigate bounds for solutions of the non-
linear differential systems using the notion of t∞-similarity.
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1. Introduction

As is traditional in a pertubation theory of nonlinear differential systems,
the behavior of solutions of a perturbed system is determined in terms of the
behavior of solutions of an unperturbed system. There are three useful methods
for investigating the qualitative behavior of the solutions of perturbed nonlinear
system of differential systems: the method of variation of constants formula,
Lyapunov’ second method, and the use of inequalities.

The notion of h-stability (hS) was introduced by Pinto [13, 14] with the in-
tention of obtaining results about stability for a weakly stable system (at least,
weaker than those given exponential asymptotic stability) under some pertur-
bations. Also, he studied a general variational h-stability introduced for nonau-
tonomous systems and obtained some properties about asymptotic behavior of
solutions of differential systems called h-systems, some general results about
asymptotic integration and gave some important examples in [13]. Choi and
Ryu [3], Choi, Koo[5], and Choi et al. [4] investigated bounds of solutions for
nonlinear perturbed systems and nonlinear functional differential systems.

In this paper, we investigate bounds of solutions of the nonlinear perturbed
differential systems via t∞-similarity.
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2. Preliminaries

We consider the nonlinear nonautonomous differential system

x′(t) = f(t, x(t)), x(t0) = x0, (1)

where f ∈ C(R+ × Rn,Rn), R+ = [0,∞) and Rn is the Euclidean n-space.
We assume that the Jacobian matrix fx = ∂f/∂x exists and is continuous on
R+ ×Rn and f(t, 0) = 0. The symbol |.| will be used to denote arbitrary vector
norm in Rn .

Let x(t, t0, x0) denote the unique solution of (1) with x(t0, t0, x0) = x0, exist-
ing on [t0,∞). Then we can consider the associated variational systems around
the zero solution of (1) and around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0 (2)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0. (3)

The fundamental matrix Φ(t, t0, x0) of (3) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (2).
We recall some notions of h-stability [13,14].

Definition 2.1. The system (1) (the zero solution x = 0 of (1)) is called an
h-system if there exist a constant c ≥ 1, and a positive continuous function h on
R+ such that

|x(t)| ≤ c |x0|h(t)h(t0)−1

for t ≥ t0 ≥ 0 and |x0| small enough.

Definition 2.2. The system (1) (the zero solution x = 0 of (1)) is called h-
stable (hS) if there exist δ > 0 such that (1) is an h-system for |x0| ≤ δ and h is
bounded.

Let M denote the set of all n × n continuous matrices A(t) defined on R+

and N be the subset of M consisting of those nonsingular matrices S(t) that
are of class C1 with the property that S(t) and S−1(t) are bounded. The notion
of t∞-similarity in M was introduced by Conti [7].

Definition 2.3. A matrix A(t) ∈ M is t∞-similar to a matrix B(t) ∈ M if
there exists an n× n matrix F (t) absolutely integrable over R+, i.e.,

∫ ∞

0

|F (t)|dt < ∞
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such that

Ṡ(t) + S(t)B(t)−A(t)S(t) = F (t) (4)

for some S(t) ∈ N .

The notion of t∞-similarity is an equivalence relation in the set of all n × n
continuous matrices on R+, and it preserves some stability concepts [7, 11].

We give some related properties that we need in the sequal.

Lemma 2.1 ([14]). The linear system

x′ = A(t)x, x(t0) = x0, (5)

where A(t) is an n×n continuous matrix, is an h-system (respectively h-stable) if
and only if there exist c ≥ 1 and a positive and continuous (respectively bounded)
function h defined on R+ such that

|φ(t, t0)| ≤ c h(t)h(t0)
−1 (6)

for t ≥ t0 ≥ 0, where φ(t, t0) is a fundamental matrix of (5).

We need Alekseev formula to compare between the solutions of (1) and the
solutions of perturbed nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0, (7)

where g ∈ C(R+ × Rn,Rn) and g(t, 0) = 0. Let y(t) = y(t, t0, y0) denote the
solution of (7) passing through the point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation of con-
stants formula due to Alekseev [1].

Lemma 2.2. If y0 ∈ Rn, then for all t such that x(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +

∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Theorem 2.3 ([3]). If the zero solution of (1) is hS, then the zero solution of
(2) is hS.

Theorem 2.4 ([5]). Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0)) for
t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. If the solution v = 0 of (2) is
hS, then the solution z = 0 of (3) is hS.

Lemma 2.5. (Bihari-type inequality) Let u, λ ∈ C(R+), w ∈ C((0,∞)) and
w(u) be nondecreasing in u . Suppose that, for some c > 0,

u(t) ≤ c+

∫ t

t0

λ(s)w(u(s))ds, t ≥ t0 ≥ 0.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

λ(s)ds
]
, t0 ≤ t < b1,
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where W (u) =
∫ u

u0

ds
w(s) , W

−1(u) is the inverse of W (u) and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

λ(s)ds ∈ domW−1
}
.

Lemma 2.6 ([6]). Let u, λ1, λ2, w ∈ C(R+) and w(u) be nondecreasing in u
such that 1

vw(u) ≤ w(uv ) for some v > 0. If ,for some c > 0,

u(t) ≤ c+

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ1(s)(

∫ s

t0

λ2(τ)w(u(τ))dτ)ds, 0 ≤ t0 ≤ t.

then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

λ2(s)ds
]
exp

∫ t

t0

λ1(s)ds, t0 ≤ t < b1,

where W,W−1 are the same functions as in Lemma 2.5 and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

λ2(s)ds ∈ domW−1
}
.

3. Main results

In this section, we investigate the bounded property for the nonlinear differ-
ential systems via t∞-similarity.

Theorem 3.1. Let γ, u, w ∈ C(R+), w(u) be nondecreasing in u such that
1
vw(u) ≤ w(uv ) for some v > 0. Suppose that the solution x = 0 of (1) is hS with
a nondecreasing function h and the perturbed term g in (7) satisfies

|Φ(t, s, z)g(t, z)| ≤ γ(s)w(|z|), t ≥ t0 ≥ 0,

where
∫∞
t0

γ(s)ds < ∞. Then, all solutions y(t) = y(t, t0, y0) of (7) are bounded

on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) +

∫ t

t0

γ(s)ds
]
, t0 ≤ t < b1,

where c = c1|y0|h(t0)−1 and W,W−1 are the same functions as in Lemma 2.5
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

γ(s)ds ∈ domW−1
}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (1) and (7),
respectively. By Lemma 2.2, we obtain

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))g(s, y(s))|ds

≤ c|y0|h(t)h(t0)−1 +

∫ t

t0

γ(s)h(t)w(
|y(s)|
h(s)

)ds
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since h is nondecreasing. Set u(t) = |y(t)|h(t)−1. Then, by Lemma 2.5, we have

|y(t)| ≤ h(t)W−1
[
W (c) +

∫ t

t0

γ(s)ds
]
, t0 ≤ t < b1,

where c = c1|y0|h(t0)−1. Therefore, we obtain the result. ¤

Also, we examine the bounded property for the perturbed system.

y′ = f(t, y) +

∫ t

t0

g(s, y(s))ds, y(t0) = y0, (8)

where g ∈ C(R+ × Rn,Rn) and g(t, 0) = 0.

Theorem 3.2. Let γ, u, w ∈ C(R+), w(u) be nondecreasing in u such that
1
vw(u) ≤ w(uv ) for some v > 0. Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0))
for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0, the solution x = 0 of (1) is
hS with the increasing function h, and g in (8) satisfies

∣∣∣∣
∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ ≤ γ(s)w(|y(s)|),

where
∫∞
t0

γ(s)ds < ∞. Then, all solutions y(t) = y(t, t0, y0) of (8) are bounded

on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) +

∫ t

t0

c2γ(s)ds
]
, t0 ≤ t < b1,

where c = c1|y0|h(t0)−1 and W,W−1 are the same functions as in Lemma 2.5
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

c2γ(s)ds ∈ domW−1
}
.

Proof. Let x(t) = x(t, t0, x0) and y(t) = y(t, t0, x0) be solutions of (1) and (2),
respectively. By Theorem 2.3, since the solution x = 0 of (1) is hS, the solution
v = 0 of (2) is hS. Therefore, by Theorem 2.4, the solution z = 0 of (3) is hS. By
Lemma 2.1, Lemma 2.2 and the increasing property of the function h, we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣
∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ds

≤ c1|y0|h(t)h(t0)−1 +

∫ t

t0

c2h(t)γ(s)w(
|y(s)|
h(s)

)ds.

Set u(t) = |y(t)|h(t)−1. Then, by Lemma 2.5, we obtain

|y(t)| ≤ h(t)W−1
[
W (c) +

∫ t

t0

c2γ(s)ds
]
, t0 ≤ t < b1,

where c = c1|y0|h(t0)−1. Hence, the proof is complete.
¤
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Remark 3.1. Letting w(u) = u in Theorem 2.2, we obtain the same result as
that of Theorem 3.3 in [10].

Theorem 3.3. Let a, k, u, w ∈ C(R+), w(u) be nondecreasing in u such that
1
vw(u) ≤ w(uv ) for some v > 0. Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0))
for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0, the solution x = 0 of (1) is
hS with the increasing function h, and g in (8) satisfies

∣∣∣∣
∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ ≤ a(s)(|y(s)|+
∫ s

t0

k(τ)w(|y(τ)|)dτ), s ≥ t0 ≥ 0,

where
∫∞
t0

a(s)ds < ∞ and
∫∞
t0

k(s)ds < ∞. Then, all solutions y(t) = y(t, t0, y0)

of (8) are bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) +

∫ t

t0

k(s)ds
]
exp

(∫ t

t0

c2a(s)ds
)
, t0 ≤ t < b1,

where c = c1|y0|h(t0)−1 and W,W−1 are the same functions as in Lemma 2.5
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

k(s)ds ∈ domW−1
}
.

Proof. Let x(t) = x(t, t0, x0) and y(t) = y(t, t0, x0). By Theorem 2.3, since the
solution x = 0 of (1) is hS, the solution v = 0 of (2) is hS. Therefore, by Theorem
2.4, the solution z = 0 of (3) is hS. By Lemma 2.1, Lemma 2.2 and the increasing
property of the function h, we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣
∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ds

≤ c1|y0|h(t)h(t0)−1 +

∫ t

t0

c2h(t)a(s)
|y(s)|
h(s)

ds

+

∫ t

t0

c2h(t)a(s)

∫ s

t0

k(τ)w(
|y(τ)|
h(τ)

)dτds.

Set u(t) = |y(t)|h(t)−1. Then, by Lemma 2.6, we obtain

|y(t)| ≤ h(t)W−1
[
W (c) +

∫ t

t0

k(s)ds
]
exp

(∫ t

t0

c2a(s)ds
)
, t0 ≤ t < b1,

where c = c1|y0|h(t0)−1. This completes the proof. ¤

Remark 3.2. Letting k(τ) = 0 in Theorem 2.4, we have the same result as that
of Theorem 3.3 in [10].

We need the following lemma for the bounded property of (8).
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Lemma 3.4. Let u, p, q ∈ C(R+), w ∈ C((0,∞)) and w(u) be nondecreasing in
u. Suppose that ,for some c ≥ 0,

u(t) ≤ c+

∫ t

t0

(p(s)

∫ s

t0

q(τ)w(u(τ))dτ)ds, t ≥ t0. (9)

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(p(s)

∫ s

t0

q(τ)dτ)ds
]
, t0 ≤ t < b1, (10)

where W,W−1 are the same functions as in Lemma 2.5 and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(p(s)

∫ s

t0

q(τ)dτ)ds ∈ domW−1
}
.

Proof. Setting v(t) = c+
∫ t

t0
(p(s)

∫ s

t0
q(τ)w(u(τ)dτ)ds, we have v(t0) = c and

v′(t) = p(t)

∫ t

t0

q(s)w(u(s))ds ≤ p(t)

∫ t

t0

q(s)w(v(s))ds

≤
[
p(t)

∫ t

t0

q(s)ds
]
w(v(t)), t ≥ t0,

(11)

since v(t) and w(u) are nondecreasing and u(t) ≤ v(t). Therefore, by integrating
on [t0, t], the function v satisfies

v(t) ≤ c+

∫ t

t0

(p(s)

∫ s

t0

q(τ)dτ)w(v(s))ds. (12)

It follows from Lemma 2.5 that (12) yields the estimate (10). ¤

Theorem 3.5. Let w ∈ C(R+), w(u) be nondeacreasing in u such that 1
vw(u) ≤

w(uv ) for some v > 0. Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0)) for
t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. If the solution x = 0 of (1) is
an h-system with a positive continuous function h and g in (8) satisfies

|g(t, y)| ≤ λ(t)w(|y|), t ≥ t0, y ∈ Rn

where λ : R+ → R+ is continuous with∫ ∞

t0

1

h(s)

∫ s

t0

h(τ)λ(τ)dτds < ∞, (13)

for all t0 ≥ 0, then all solutions y(t) = y(t, t0, y0) of (8) are bounded on [t0,∞)
and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) +

∫ t

t0

c2
h(s)

∫ s

t0

h(τ)λ(τ)dτds
]
, t0 ≤ t < b1,

where c = c1|y0|h(t0)−1 and W,W−1 are the same functions as in Lemma 2.5
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

c2
h(s)

∫ s

t0

h(τ)λ(τ)dτds ∈ domW−1
}
.
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Proof. Let x(t) = x(t, t0, x0) and y(t) = y(t, t0, x0). By Theorem 2.3, since the
solution x = 0 of (1) is an h-system, the solution v = 0 of (2) is an h-system.
Therefore, by Theorem 2.4, the solution z = 0 of (3) is an h-system. By Lemma
2.2, we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∫ s

t0

|g(τ, y(τ))|dτds

≤ c1|y0|h(t)h(t0)−1 +

∫ t

t0

c2
h(t)

h(s)

∫ s

t0

h(τ)λ(τ)w(
|y(τ)|
h(τ)

)dτds.

Setting u(t) = |y(t)|h(t)−1 and using Lemma 3.4, we obtain

|y(t)| ≤ h(t)W−1
[
W (c) +

∫ t

t0

c2
h(s)

∫ s

t0

h(τ)λ(τ)dτds
]
, t0 ≤ t < b1,

where c = c1|y0|h(t0)−1. It follows from boundedness of h(t) and (13) that all
solutions of (8) are bounded. Hence, the proof is complete. ¤

Remark 3.3. Letting w(u) = u in Theorem 2.7, we have the same result as
that of Theorem 2.5 in [9].

Acknowledgment

The author is very grateful for the referee’s valuable comments.

References

1. V. M. Alekseev, An estimate for the perturbations of the solutions of ordinary differential
equations, Vestn. Mosk. Univ. Ser. I. Math. Mech., Vol. 2(1961), 28-36.

2. S. K. Choi and N. J. Koo, h-stability for nonlinear perturbed systems, Ann. of Diff. Eqs.
Vol. 11(1995), 1–9.

3. S. K. Choi and H. S. Ryu, h-stability in differential systems, Bull. Inst. Math. Acad. Sinica
Vol. 21(1993), 245–262.

4. S. K. Choi, N. J. Koo and S. M. Song, Stabilities for nonlinear functional differential
equations, J. Chungcheong Math. Soc. Vol. 9(1996), 165-174.

5. S. K. Choi, N. J. Koo and H. S. Ryu, h-stability of differential systems via t∞-similarity,
Bull. Korean. Math. Soc. Vol. 34(1997), 371–383.

6. S. K. Choi, N. J. Koo and S. M. Song, Lipschitz stability for nonlinear functional differential
systems, Far East J. Math. Sci(FJMS)I Vol. 5(1999), 689-708.

7. R. Conti, Sulla t∞-similitudine tra matricie l’equivalenza asintotica dei sistemi differenziali
lineari, Rivista di Mat. Univ. Parma Vol. 8(1957), 43–47.

8. S. Elaydi and R. R. M. Rao, Lipschitz stability for nonlinear Volterra integro-differential
systems, Appl. Math. Computations Vol. 27(1988), 191–199.

9. Y. H. Goo, h-stability of the nonlinear differential systems via t∞-similarity, J. Chungcheong
Math. Soc. Vol. 23(2010), No.2, 383-389.

10. Y. H. Goo and D. H. Ry, h-stability of the nonlinear perturbed differential systems, J.
Chungcheong Math. Soc. Vol. 23(2010), No.4, 827–834.

11. G. A. Hewer, Stability properties of the equation by t∞-similarity, J. Math. Anal. Appl.
Vol. 41(1973), 336–344.

12. V. Lakshmikantham and S. Leela, Differential and Integral Inequalities: Theory and Ap-
plications Vol. I, Academic Press, New York and London, 1969.



Boundedness in perturbed differential systems 287

13. M. Pinto, Perturbations of asymptotically stable differential systems, Analysis Vol.
4(1984), 161–175.

14. M. Pinto, Stability of nonlinear differential systems, Applicable Analysis Vol. 43(1992),
1–20.

Yoon Hoe Goo received the BS from Cheongju University and Ph.D at Chungnam Na-
tional University under the direction of Chin-Ku Chu. Since 1993 he has been at Hanseo
University as a professor. His research interests focus on topologival dynamical systems and
differential equations.

Department of Mathematics, Hanseo University, Seasan 356-706, Korea
e-mail: yhgoo@hanseo.ac.kr

Dong Gon Park is a graduate student in Hanseo University.

Department of Mathematics, Hanseo University, Seasan 356-706, Korea
e-mail: hsodang@lycos.co.kr

Dae Hee Ryu received the BS from Chung-Ang University and Ph.D at Wonkwang Univer-
sity. Since 1995 he has been at Chungwoon University as a professor. His research interests
focus on probability theory and differential equations.

Department of Computer Science , Chungwon University, Hongseong 351-701, Korea
e-mail: rdh@chungwoon.ac.kr


