DOI QR코드

DOI QR Code

BOUNDEDNESS FOR NONLINEAR PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS VIA t-SIMILARITY

  • Im, Dong Man (Department of Mathematics Education Cheongju University)
  • Received : 2016.07.14
  • Accepted : 2016.10.13
  • Published : 2016.11.15

Abstract

This paper shows that the solutions to the nonlinear perturbed differential system $$y^{\prime}=f(t,y)+{\int_{t_0}^{t}}g(s,y(s),T_1y(s))ds+h(t,y(t),T_2y(t))$$, have bounded properties. To show these properties, we impose conditions on the perturbed part ${\int_{t_0}^{t}}g(s,y(s),T_1y(s))ds,h(t,y(t),T_2y(t))$, and on the fundamental matrix of the unperturbed system y' = f(t, y) using the notion of h-stability.

Keywords

References

  1. V. M. Alekseev, An estimate for the perturbations of the solutions of ordinary differential equations, Vestn. Mosk. Univ. Ser. I. Math. Mekh. 2 (1961), 28-36.
  2. F. Brauer, Perturbations of nonlinear systems of differential equations, J. Math. Anal. Appl. 14 (1966), 198-206. https://doi.org/10.1016/0022-247X(66)90021-7
  3. S. I. Choi and Y. H. Goo, Boundedness in perturbed nonlinear functional differential systems, J. Chungcheong Math. Soc. 28 (2015), 217-228. https://doi.org/10.14403/jcms.2015.28.2.217
  4. S. I. Choi and Y. H. Goo, h-stability and boundedness in perturbed functional differential systems, Far East J. Math. Sci.(FJMS) 97 (2015), 69-93. https://doi.org/10.17654/FJMSMay2015_069_093
  5. S. I. Choi, D. M. Im, and Y. H. Goo, Boundedness in perturbed functional differential systems, J. Appl. Math. and Informatics 32 (2014), 697-705. https://doi.org/10.14317/jami.2014.697
  6. S. I. Choi, D. M. Im, and Y. H. Goo, Boundedness in nonlinear perturbed functional differential systems, J. Chungcheong Math. Soc. 27 (2014), 335-345. https://doi.org/10.14403/jcms.2014.27.2.335
  7. S. K. Choi and H. S. Ryu, h-stability in differential systems, Bull. Inst. Math. Acad. Sinica 21 (1993), 245-262.
  8. S. K. Choi, N. J. Koo, and H. S. Ryu, h-stability of differential systems via $t_{\infty}$-similarity, Bull. Korean. Math. Soc. 34 (1997), 371-383.
  9. R. Conti and Sulla, $t_{\infty}$-similitudine tra matricie l'equivalenza asintotica dei sistemi differenziali lineari, Rivista di Mat. Univ. Parma 8 (1957), 43-47.
  10. Y. H. Goo, Boundedness in functional differential systems by $t_{\infty}$-similarity, J. Chungcheong Math. Soc. 29 (2016), 347-359. https://doi.org/10.14403/jcms.2016.29.2.347
  11. Y. H. Goo, Perturbations of nonlinear differential systems, Far East J. Math. Sci.(FJMS) in press.
  12. Y. H. Goo, Boundedness in the nonlinear functional perturbed differential systems via $t_{\infty}$-similarity, Far East J. Math. Sci.(FJMS) 99 (2016), 1659-1676. https://doi.org/10.17654/MS099111659
  13. G. A. Hewer, Stability properties of the equation by $t_{\infty}$-similarity, J. Math. Anal. Appl. 41 (1973), 336-344. https://doi.org/10.1016/0022-247X(73)90209-6
  14. D. M. Im, S. I. Choi, and Y. H. Goo, Boundedness in the perturbed functional differential systems, J. Chungcheong Math. Soc. 27 (2014), 479-487. https://doi.org/10.14403/jcms.2014.27.3.479
  15. V. Lakshmikantham and S. Leela, Differential and Integral Inequalities: Theory and Applications. Academic Press, New York and London, 1969.
  16. B. G. Pachpatte, Stability and asymptotic behavior of perturbed nonlinear systems, J. Diff. Equations 16 (1974) 14-25. https://doi.org/10.1016/0022-0396(74)90025-4
  17. B. G. Pachpatte, Perturbations of nonlinear systems of differential equations, J. Math. Anal. Appl. 51 (1975), 550-556. https://doi.org/10.1016/0022-247X(75)90106-7
  18. M. Pinto, Perturbations of asymptotically stable differential systems, Analysis 4 (1984), 161-175.
  19. M. Pinto, Stability of nonlinear differential systems, Applicable Analysis 43 (1992), 1-20. https://doi.org/10.1080/00036819208840049