• Title/Summary/Keyword: nonlinear solution scheme

Search Result 171, Processing Time 0.021 seconds

A Study on Nonlinear Water-Wave Profile (비선형 해양파의 파형 연구에 관하여)

  • JANG TAEK-SOO;WANG SUNG-HYUNH;KWON SUN-HONG
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.179-182
    • /
    • 2004
  • This paper deals with a new mathematical formulation of nonlinear wave profile based on Banach fixed point theorem. As application of the formulation and its solution procedure, some numerical solutions was presented in this paper and nonlinear equation was derived. Also we introduce a new operator for iteration and getting solution. A numerical study was accomplished with Stokes' first-order solution and iteration scheme, and then we can know the nonlinear characteristic of Stokes' high-order solution. That is, using only Stokes' first-oder(linear) velocity potential and an initial guess of wave profile, it is possible to realize the corresponding high-oder Stokian wave profile with tile new numerical scheme which is the method of iteration. We proved the mathematical convergence of tile proposed scheme. The nonlinear strategy of iterations has very fast convergence rate, that is, only about 6-10 iterations arc required to obtain a numerically converged solution.

  • PDF

Development of a Kinematic Wave Model to Route Overland Flow in Vegetated Area (I) -Theory and Numerical Solution- (초지의 지표면 흐름을 추적하기위한 Kinematic Wave Model의 개발(I) -이론 Model의 개발-)

  • ;W.L.MAGETTE
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.2
    • /
    • pp.57-64
    • /
    • 1993
  • A modified kinematic wave model of the overland flow in vegetated filter strips was developed. The model can predict both flow depth and hydraulic radius of the flow. Existing models can predict only mean flow depth. By using the hydraulic radius, erosion, deposition and flow's transport capacity can be more rationally computed. Spacing hydraulic radius was used to compute flow's hydraulic radius. Numerical solution of the model was accomplished by using both a second-order nonlinear scheme and a linear solution scheme. The nonlinear portion of the model ensures convergence and the linear portion of the model provides rapid computations. This second-order nonlinear scheme minimizes numerical computation errors that may be caused by linearization of a nonlinear model. This model can also be applied to golf courses, parks, no-till fields to route runoff and production and attenuation of many nonpoint source pollutants.

  • PDF

A NONLINEAR CONVEX SPLITTING FOURIER SPECTRAL SCHEME FOR THE CAHN-HILLIARD EQUATION WITH A LOGARITHMIC FREE ENERGY

  • Kim, Junseok;Lee, Hyun Geun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.265-276
    • /
    • 2019
  • For a simple implementation, a linear convex splitting scheme was coupled with the Fourier spectral method for the Cahn-Hilliard equation with a logarithmic free energy. However, an inappropriate value of the splitting parameter of the linear scheme may lead to incorrect morphologies in the phase separation process. In order to overcome this problem, we present a nonlinear convex splitting Fourier spectral scheme for the Cahn-Hilliard equation with a logarithmic free energy, which is an appropriate extension of Eyre's idea of convex-concave decomposition of the energy functional. Using the nonlinear scheme, we derive a useful formula for the relation between the gradient energy coefficient and the thickness of the interfacial layer. And we present numerical simulations showing the different evolution of the solution using the linear and nonlinear schemes. The numerical results demonstrate that the nonlinear scheme is more accurate than the linear one.

A PARAMETRIC SCHEME FOR THE NUMERICAL SOLUTION OF THE BOUSSINESQ EQUATION

  • Bratsos, A.G.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.45-57
    • /
    • 2001
  • A parametric scheme is proposed for the numerical solution of the nonlinear Boussinesq equation. The numerical method is developed by approximating the time and the space partical derivatives by finite-difference re placements and the nonlinear term by an appropriate linearized scheme. The resulting finite-difference method is analyzed for local truncation error and stability. The results of a number of numerical experiments are given for both the single and the double-soliton wave. AMS Mathematics Subject Classification : 65J15, 47H17, 49D15.

A LINEARIZED FINITE-DIFFERENCE SCHEME FOR THE NUMERICAL SOLUTION OF THE NONLINEAR CUBIC SCHRODINGER EQUATION

  • Bratsos, A.G.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.683-691
    • /
    • 2001
  • A linearized finite-difference scheme is used to transform the initial/boundary-value problem associated with the nonlinear Schrodinger equation into a linear algebraic system. This method is developed by replacing the time and the nonlinear term by an appropriate parametric linearized scheme based on Taylor’s expansion. The resulting finite-difference method is analysed for stability and convergence. The results of a number of numerical experiments for the single-soliton wave are given.

A RANDOM GENERALIZED NONLINEAR IMPLICIT VARIATIONAL-LIKE INCLUSION WITH RANDOM FUZZY MAPPINGS

  • Khan, F.A.;Aljohani, A.S.;Alshehri, M.G.;Ali, J.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.4
    • /
    • pp.717-731
    • /
    • 2021
  • In this paper, we introduce and study a new class of random generalized nonlinear implicit variational-like inclusion with random fuzzy mappings in a real separable Hilbert space and give its fixed point formulation. Using the fixed point formulation and the proximal mapping technique for strongly maximal monotone mapping, we suggest and analyze a random iterative scheme for finding the approximate solution of this class of inclusion. Further, we prove the existence of solution and discuss the convergence analysis of iterative scheme of this class of inclusion. Our results in this paper improve and generalize several known results in the literature.

THE N-ORDER ITERATIVE SCHEME FOR A SYSTEM OF NONLINEAR WAVE EQUATIONS ASSOCIATED WITH THE HELICAL FLOWS OF MAXWELL FLUID

  • Ngoc, Le Thi Phuong;Dzung, Nguyen Vu;Long, Nguyen Thanh
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.3
    • /
    • pp.471-497
    • /
    • 2022
  • In this paper, we study a system of nonlinear wave equations associated with the helical flows of Maxwell fluid. By constructing a N-order iterative scheme, we prove the local existence and uniqueness of a weak solution. Furthermore, we show that the sequence associated with N-order iterative scheme converges to the unique weak solution at a rate of N-order.

An Iterative Scheme for Resolving Unbalanced Forces Between Nonlinear Flexural Bending and Shear Springs in Lumped Plasticity Model (비선형 휨 및 전단 힌지 사이의 불평형력 해소를 위한 수렴계산 기법)

  • Kim, Yousok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.227-235
    • /
    • 2022
  • For a member model in nonlinear structural analysis, a lumped plastic model that idealizes its flexural bending, shear, and axial behaviors by springs with the nonlinear hysteretic model is widely adopted because of its simplicity and transparency compared to the other rigorous finite element methods. On the other hand, a challenging task in its numerical solution is to satisfy the equilibrium condition between nonlinear flexural bending and shear springs connected in series. Since the local forces between flexural and shear springs are not balanced when one or both springs experience stiffness changes (e.g., cracking, yielding, and unloading), the additional unbalanced force due to overshooting or undershooting each spring force is also generated. This paper introduces an iterative scheme for numerical solutions satisfying the equilibrium conditions between flexural bending and shear springs. The effect of equilibrium iteration on analysis results is shown by comparing the results obtained from the proposed method to those from the conventional scheme, where the equilibrium condition is not perfectly satisfied.

ERROR ESTIMATES FOR A GALERKIN METHOD FOR A COUPLED NONLINEAR SCHRÖDINGER EQUATIONS

  • Omrani, Khaled;Rahmeni, Mohamed
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.219-244
    • /
    • 2020
  • In this paper, we approximate the solution of the coupled nonlinear Schrödinger equations by using a fully discrete finite element scheme based on the standard Galerkin method in space and implicit midpoint discretization in time. The proposed scheme guarantees the conservation of the total mass and the energy. First, a priori error estimates for the fully discrete Galerkin method is derived. Second, the existence of the approximated solution is proved by virtue of the Brouwer fixed point theorem. Moreover, the uniqueness of the solution is shown. Finally, convergence orders of the fully discrete Crank-Nicolson scheme are discussed. The end of the paper is devoted to some numerical experiments.

A CONSERVATIVE NONLINEAR DIFFERENCE SCHEME FOR THE VISCOUS CAHN-HILLIARD EQUATION

  • Choo, S.M.;Chung, S.K.
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.53-68
    • /
    • 2004
  • Numerical solutions for the viscous Cahn-Hilliard equation are considered using the Crank-Nicolson type finite difference method which conserves the mass. The corresponding stability and error analysis of the scheme are shown. The decay speeds of the solution in $H^1-norm$ are shown. We also compare the evolution of the viscous Cahn-Hilliard equation with that of the Cahn-Hilliard equation numerically and computationally, which has been given as an open question in Novick-Cohen[13].