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Abstract. In this paper, we introduce and study a new class of random generalized nonlin-

ear implicit variational-like inclusion with random fuzzy mappings in a real separable Hilbert

space and give its fixed point formulation. Using the fixed point formulation and the prox-

imal mapping technique for strongly maximal monotone mapping, we suggest and analyze

a random iterative scheme for finding the approximate solution of this class of inclusion.

Further, we prove the existence of solution and discuss the convergence analysis of iterative

scheme of this class of inclusion. Our results in this paper improve and generalize several

known results in the literature.

1. Introduction

In 1994, Hassouni and Moudafi [9] used the resolvent operator technique
for maximal monotone mapping to study a class of mixed type variational in-
equalities with single-valued mappings which was called variational inclusions
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and developed a perturbed algorithm for finding approximate solutions of the
mixed variational inequalities. Since then, many researchers have obtained
some important extensions and generalizations of the results given in [9] in
different directions (see [1,7,12,16,17]).

In 1965, Zadeh [23] gave the notion of fuzzy sets as an extension of crisp sets,
the usual two-valued sets in ordinary set theory, by enlarging the truth value
set to the real unit interval [0, 1]. Ordinary fuzzy sets are characterized by,
and mostly identified with, mapping called ‘membership function’ into [0, 1].
The basic operations and properties of fuzzy sets or fuzzy relations are defined
by equations or inequalities between the membership functions. Heilpern [10]
initiated the study of fuzzy mappings and established a fuzzy analogue of the
Nadler’s fixed point theorem [18] for multivalued mappings. Random varia-
tional inequality theory is an important part of random functional analysis.
These topics have attracted many scholars and experts due to the extensive
applications of the random problems (see [4,5,8-11,19,23]).

In 1989, Chang and Zhu [4] initiated the study of a class of variational
inequalities with fuzzy mappings. In recent past, various classes of random
variational inequalities have been introduced and studied by Chang [2], Chang
and Huang [3], Ding [5], Huang [13], Noor [19] and Park and Jeong [21].

Recently, Huang [14] developed an iterative scheme for a class of random
variational inclusions with random fuzzy mappings and discuss its convergence
criteria in real separable Hilbert space. Very recently, Ahmad and Bazan [1],
Ding and Park [6], Kazmi [15], Lan et al. [17], Onjai-uea and Kumam [20] and
Park and Jeong [22] introduced and studied various generalized classes of ran-
dom variational inclusions involving random fuzzy mappings in real separable
spaces.

Inspired and motivated by recent work in this field, in this paper, we
introduce and study a new class of random generalized nonlinear implicit
variational-like inclusion with random fuzzy mappings in a real separable
Hilbert space and give its fixed point formulation. Using this fixed point
formulation and the proximal mapping technique for strongly maximal mono-
tone mapping, we suggest and analyze a random iterative scheme for finding
the approximate solution of this class of inclusion. Further, we prove the ex-
istence of solution and discuss the convergence analysis of iterative scheme of
this class of inclusion. Our results in this paper improve and generalize some
known corresponding results (see [1,3,6-9,12-17,20-22]).
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2. Preliminaries

Let H be a real separable Hilbert space whose norm and inner product
are denoted by ‖ · ‖ and 〈·, ·〉 respectively, let (Ω,Σ) be a measurable space,
where Ω is a set and Σ is σ-algebra of subsets of Ω, B(H) be the class of Borel
σ-fields in H, CB(H) denotes the collection of all nonempty, bounded and
closed subsets of H and 2H denotes the power set of H. The Hausdorff metric
H̃(·, ·) on CB(H) is defined by

H̃(A,B) = max
{

sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}
, A,B ∈ CB(H). (2.1)

First, we recall and define the following concepts and known results.

Definition 2.1. ([20]) A mapping x : Ω → H is said to be measurable if, for
any B ∈ B(H), {t ∈ Ω : x(t) ∈ B} ∈ Σ.

Definition 2.2. ([20]) A mapping f : Ω × H → H is said to be random
if, for any x ∈ H, f(t, x) = y(t) is measurable. A random mapping f is
said to be continuous (resp. linear, bounded) if for any t ∈ Ω, the mapping
f(t, ·) : H → H is continuous (resp. linear, bounded).

Similarly, we can define a random mapping a : Ω × H × H → H. We
will write ft(x) = f(t, x(t)) and at(x, y) = a(t, x(t), y(t)) for all t ∈ Ω and
x(t), y(t) ∈ H.

Remark 2.3. ([20]) It is well known that a measurable mapping is necessarily
a random mapping.

Definition 2.4. ([20]) A multivalued mapping G : Ω → 2H is said to be
measurable if, for any B ∈ B(H), G−1(B) = {t ∈ Ω : G(t) ∩B 6= ∅} ∈ Σ.

Definition 2.5. ([20]) A mapping u : Ω→ H is said to be measurable selection
of a multivalued measurable mapping G : Ω → 2H if u is a measurable and
for any t ∈ Ω, u(t) ∈ G(t).

Definition 2.6. ([20]) A multivalued mapping F : Ω × H → 2H is said to
be random if, for any x ∈ H, F (·, x) is measurable. A random multivalued

mapping F : Ω × H → CB(H) is said to be H̃-continuous if, for any t ∈ Ω,
F (t, ·) is continuous in the Hausdorff metric.

Definition 2.7. ([20]) Let F(H) be the family of all fuzzy sets over H. A
mapping F : H → F(H) is called a fuzzy mapping over H.
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Definition 2.8. ([20]) If F is a fuzzy mapping over H, then F (x) (denoted by
Fx in the sequel) is said to be a fuzzy set on H, and Fx(y) is the membership
function of y in Fx.

Definition 2.9. ([20]) Let A ∈ F(H), α ∈ [0, 1]. Then the set

(A)α = {x ∈ H : A(x) ≥ α} (2.2)

is called a α-cut set of fuzzy set A.

Definition 2.10. ([20]) A fuzzy mapping F : Ω→ F(H) is called measurable
if, for any α ∈ (0, 1], (F (·))α : Ω→ 2H is a measurable multivalued mapping.

Definition 2.11. ([20]) A fuzzy mapping F : Ω×H → F(H) is said to be a
random fuzzy mapping if, for any x ∈ H, F (·, x) : Ω→ F(H) is a measurable
fuzzy mapping.

Remark 2.12. ([20]) We note that the random fuzzy mappings include multi-
valued mappings, random multivalued mappings and fuzzy mappings as the
special cases.

Definition 2.13. ([16]) Let η : H × H → H be a single-valued mapping.
Then a multi-valued mapping M : H → 2H is said to be

(i) η-monotone, if

〈u− v, η(x, y)〉 ≥ 0, ∀x, y ∈ H, u ∈M(x), v ∈M(y);

(ii) strictly η-monotone, if

〈u− v, η(x, y)〉 > 0, ∀x, y ∈ H, u ∈M(x), v ∈M(y)

and equality holds if and only if x = y;
(iii) ν-strongly η-monotone, if there exists a constant ν > 0 such that

〈u− v, η(x, y)〉 ≥ ν‖x− y‖2, ∀x, y ∈ H, u ∈M(x), v ∈M(y);

(iv) maximal-η-monotone, if M is η-monotone and (I + ρM)(H) = H for
any ρ > 0, where I stands for identity mapping.

Definition 2.14. ([7,16]) Let η : H×H → H be a mapping. Then a mapping
P : H → H is said to be

(i) η-monotone, if

〈P (x)− P (y), η(x, y)〉 ≥ 0, ∀x, y ∈ H;

(ii) strictly η-monotone, if

〈P (x)− P (y), η(x, y)〉 > 0, ∀x, y ∈ H
and equality holds if and only if x = y;
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(iii) δ-strongly η-monotone, if there exists a constant δ > 0 such that

〈P (x)− P (y), η(x, y)〉 ≥ δ‖x− y‖2, ∀x, y ∈ H.

Definition 2.15. ([16]) Let η : H ×H → H and P : H → H be mappings.
A multi-valued mapping M : H → 2H is said to be γ-strongly maximal P -
η-monotone, if M is γ-strongly η-monotone and (P + ρM)H = H for any
ρ > 0.

The following theorems give some properties of γ-strongly maximal P -η-
monotone mappings.

Theorem 2.16. ([16]) Let η : H × H → H be a mapping and P : H → H
be a strictly η-monotone mapping. Let M : H → 2H be a γ-strongly maximal
P -η-monotone multi-valued mapping, then

(a) 〈u−v, η(x, y)〉 ≥ 0, ∀ (v, y) ∈ Graph(M) implies (u, x) ∈ Graph(M),
where Graph(M) := {(u, x) ∈ H ×H : u ∈M(x)};

(b) the mapping (P + ρM)−1 is single-valued for all ρ > 0.

By Theorem 2.16, we define strongly P -η-proximal mapping for a γ-strongly
maximal η-monotone mapping M as follows:

RMP,η(z) = (P + ρM)−1, ∀ z ∈ H, (2.3)

where ρ > 0 is a constant, η : H ×H → H is a mapping and P : H → H is a
strictly η-monotone mapping.

Theorem 2.17. ([16]) Let P : H → H be a δ-strongly η-monotone mapping
and η : H ×H → H be a τ -Lipschitz continuous mapping. Let M : H → 2H

be a γ-strongly maximal η-monotone multivalued mapping. Then strongly P -

η-proximal mapping RMP,η is
τ

δ + ργ
-Lipschitz continuous, that is,

‖RMP,η(x)−RMP,η(y)‖ ≤ τ

δ + ργ
‖x− y‖, ∀x, y ∈ H. (2.4)

3. Formulation of problem

Let Q,R, S, Z : Ω ×H → F(H) be random fuzzy mappings satisfying the
following condition (C): there exist mappings q, r, s, e : H → (0, 1] such that

(Qt,x)q(x), (Rt,x)r(x), (St,x)s(x), (Zt,x)e(x) ∈ CB(H), (3.1)

for all (t, x) ∈ Ω×H.

By using the random fuzzy mappings Q,R, S and Z, we can define respec-
tively the multi-valued mappings Q̃, R̃, S̃, Z̃ : Ω ×H → CB(H) by Q̃(t, x) =
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(Qt,x)q(x), R̃(t, x) = (Rt,x)r(x), S̃(t, x) = (St,x)s(x), Z̃(t, x) = (Zt,x)e(x), for
each (t, x) ∈ Ω×H.

In the sequel, Q̃, R̃, S̃ and Z̃ are called the random multi-valued mappings
induced by the random fuzzy mappings Q,R, S and Z, respectively.

Let P : H → H; η : H×H → H; N : Ω×H×H×H → H be single-valued
mappings, and let g,m : Ω ×H → H be random mappings such that g 6≡ 0.
Let M : Ω ×H ×H → 2H be a multi-valued random mapping such that for
each (t, x) ∈ Ω×H, M(t, ·, x) is strongly maximal P -η-monotone and

(g −m)(Ω×H) ∩ domainM(t, ·, x) 6= ∅,

where

(g −m)(t, x) = g(t, x)−m(t, x), for any (t, x) ∈ Ω×H.

We consider the following random generalized nonlinear implicit variation-
al-like inclusion problem involving random fuzzy mappings (RGNIVLIP): Find
measurable mappings x, u, v, w, z : Ω → H such that for all t ∈ Ω, x(t) ∈
H, Qt,x(t)(u(t)) ≥ q(x(t)), Rt,x(t)(v(t)) ≥ r(x(t)), St,x(t)(w(t)) ≥ s(x(t)),
Zt,x(t)(z(t)) ≥ e(x(t)) and

0 ∈ N(t, u(t), v(t), w(t)) +M(t, (g −m)(t, x(t)), z(t)). (3.2)

For a suitable choice of the mappings N,M,P,Q,R, S, Z, g,m, η, q, r, s, e
and the space H, it is easy to check that RGNIVLIP (3.2) contains a number
of known classes of random variational inclusions (inequalities) studied by
many researchers as special cases (see [1,4-8,13-15,17-22]).

4. Random iterative scheme

First we recall the following useful lemmas.

Lemma 4.1. ([2]) Let M : Ω × H → CB(H) be a H̃-continuous random
multivalued mapping. Then, for any measurable mapping w : Ω → H, the
multi-valued mapping M(·, w(·)) : Ω→ CB(H) is measurable.

Lemma 4.2. ([2]) Let M,V : Ω × H → CB(H) be two measurable multi-
valued mappings, ε > 0 be a constant and v : Ω→ H be a measurable selection
of M . Then there exists a measurable selection w : Ω→ H of V such that, for
any t ∈ Ω,

‖v(t)− w(t)‖ ≤ (1 + ε) H̃(M(t) , V (t)).

Now, we give the fixed point formulation of RGNIVLIP (3.2).
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Lemma 4.3. The set of measurable mappings x, u, v, w, z : Ω → H is a
random solution of RGNIVLIP (3.2) if and only if, for all t ∈ Ω the random
multivalued mapping G : Ω×H → 2H defined by

G(t, x(t))

=
⋃

u(t)∈Q̃(t,x(t))

⋃
v(t)∈R̃(t,x(t))

⋃
w(t)∈S̃(t,x(t))

⋃
z(t)∈Z̃(t,x(t))

[
x(t)− (g −m)(t, x(t))

+R
M(t,·,z(t))
P,η

(
P ◦ (g −m)(t, x(t))− ρ(t)N(t, u(t), v(t), w(t))

)]
, t ∈ Ω, (4.1)

has a fixed point x = x(t) ∈ H, where ρ : Ω → (0,∞) is a measurable

function; P ◦ (g − m) denotes P composition (g − m); R
M(t,·,z(t))
P,η ≡ (P +

ρ(t)M(t, ·, z(t)))−1.

Proof. RGNIVLIP (3.2) has a random solution (x, u, v, w, z) if and only if

0 ∈ N(t, u(t), v(t), w(t)) +M(t, (g −m)(t, x(t)), z(t)),

it implies that

P ◦ (g −m)(t, x(t))− ρ(t)N(t, u(t), v(t), w(t))

∈ (P + ρ(t)M(t, ·, z(t))(g −m)(t, x(t)).

Since for each (t, z(t)) ∈ Ω×H, M(t, ·, z(t)) is strongly maximal P -η-monotone,

by definition of strongly P -η-proximal mapping R
M(t,·,z(t))
P,η of M(t, ·, z(t)), pre-

ceding inclusion holds if and only if

(g−m)(t, x(t)) = R
M(t,·,z(t))
P,η

[
P ◦ (g−m)(t, x(t))−ρ(t)N(t, u(t), v(t), w(t))

]
,

that is, x(t) ∈ G(t, x(t)). This completes the proof. �

Now, based on Lemma 4.3, we give the following random iterative scheme
to compute the approximate random solution of RGNIVLIP (3.2).

Iterative Scheme A: Let Q,R, S, Z : Ω × H → F(H) be random fuzzy

mappings satisfying the condition (C). Let Q̃, R̃, S̃, Z̃ : Ω×H → CB(H) be H̃-
continuous random multi-valued mappings induced by Q,R, S, Z, respectively,
and let N : Ω×H×H×H → H be a continuous random mapping, let P : H →
H, η : H×H → H be single-valued mappings. Let M : Ω×H×H → 2H be a
random multi-valued mapping such that for each (t, z) ∈ Ω×H, M(t, ·, z) is γ-
strongly maximal P -η-monotone with (g−m)(Ω×H)∩domainM(t, ·, z) 6= ∅.
For any given measurable mapping x0 : Ω → H, the multi-valued mappings
Q̃(·, x0(·)), R̃(·, x0(·)), S̃(·, x0(·)), Z̃(·, x0(·)) : Ω → CB(H) are measurable by
Lemma 4.1. Hence by Himmelberg [11], there exist measurable selections
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u0 : Ω→ H of Q̃(·, x0(·)), v0 : Ω→ H of R̃(·, x0(·)), w0 : Ω→ H of S̃(·, x0(·))
and z0 : Ω→ H of Z̃(·, x0(·)). Let

x1(t) = x0(t)− (g −m)(t, x0(t))

+R
M(t,·,z0(t))
P,η

[
P ◦ (g −m)(t, xo(t))− ρ(t)N(t, u0(t), v0(t), w0(t))

]
.

Then, it is easy to observe that x1 : Ω → H is measurable. By Lemma 4.2,
there exist measurable selections u1 : Ω → H of Q̃(·, x1(·)), v1 : Ω → H of

R̃(·, x1(·)), w1 : Ω → H of S̃(·, x1(·)) and z1 : Ω → H of Z̃(·, x1(·)) such that
for all t ∈ Ω,

‖u1(t)− u0(t)‖ ≤ (1 + (1 + 0)−1) H̃ (Q̃(t, x1(t)), Q̃(t, x0(t))),

‖v1(t)− v0(t)‖ ≤ (1 + (1 + 0)−1) H̃ (R̃(t, x1(t)), R̃(t, x0(t))),

‖w1(t)− w0(t)‖ ≤ (1 + (1 + 0)−1) H̃ (S̃(t, x1(t)), S̃(t, x0(t)))

and

‖z1(t)− z0(t)‖ ≤ (1 + (1 + 0)−1) H̃ (Z̃(t, x1(t)), Z̃(t, x0(t))).

Let

x2(t) = x1(t)− (g −m)(t, x1(t))

+R
M(t,·,z1(t))
P,η

[
P ◦ (g−m)(t, x1(t))−ρ(t)N(t, u1(t), v1(t), w1(t))

]
.

Then x2 : Ω→ H is measurable. Continuing the above process inductively, we
can define the following random iterative sequences {xn(t)}, {un(t)}, {vn(t)},
{wn(t)} and {zn(t)} as follows:

xn+1(t) = xn(t)− (g −m)(t, xn(t)) (4.2)

+R
M(t,·,zn(t))
P,η

[
P ◦ (g−m)(t, xn(t))−ρ(t)N(t, un(t), vn(t), wn(t))

]
,

un+1(t) ∈ Q̃(t, xn+1(t)) such that

‖un+1(t)− un(t)‖ ≤ (1 + (1 + n)−1) H̃ (Q̃(t, xn+1(t)), Q̃(t, xn(t))),

vn+1(t) ∈ R̃(t, xn+1(t)) such that

‖vn+1(t)− vn(t)‖ ≤ (1 + (1 + n)−1) H̃ (R̃(t, xn+1(t)), R̃(t, xn(t))),

wn+1(t) ∈ S̃(t, xn+1(t)) such that

‖wn+1(t)− wn(t)‖ ≤ (1 + (1 + n)−1) H̃ (S̃(t, xn+1(t)), S̃(t, xn(t))),

zn+1(t) ∈ Z̃(t, xn+1(t)) such that

‖zn+1(t)− zn(t)‖ ≤ (1 + (1 + n)−1) H̃ (Z̃(t, xn+1(t)), Z̃(t, xn(t))),

for any t ∈ Ω, n = 0, 1, 2, . . . and ρ : Ω→ (0,∞) is a measurable function.
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5. Existence of solution and convergence analysis

First, we define the following concepts.

Definition 5.1. A random mapping g : Ω×H → H is said to be

(i) s(t)-strongly monotone, if there exists a measurable function s : Ω →
(0,∞) such that

〈g(t, x1(t))− g(t, x2(t)), x1(t)− x2(t)〉 ≥ s(t)‖x1(t)− x2(t)‖2;

(ii) lg(t)-Lipschitz continuous, if there exists a measurable function lg :
Ω→ (0,∞) such that

‖g(t, x1(t))− g(t, x2(t))‖ ≤ lg(t)‖x1(t)− x2(t)‖,

for all x1(t), x2(t) ∈ H, t ∈ Ω.

Definition 5.2. A random multi-valued mapping T : Ω × H → CB(H)

is said to lT (t)-H̃-Lipschitz continuous, if there exists a measurable function
lT : Ω→ (0,∞) such that

H̃(T (t, x1(t)), T (t, x2(t))) ≤ lT (t)‖x1(t)− x2(t)‖,

for all x1(t), x2(t) ∈ H, t ∈ Ω.

Definition 5.3. Let Q,R, S : Ω × H → CB(H) be random multi-valued
mappings. A random mapping N : Ω×H ×H ×H → H is said to be

(i) α(t)-strongly mixed monotone with respect to Q, R and S, if there
exists a measurable function α : Ω→ (0,∞) such that

〈N(t, u1(t), v1(t), w1(t))−N(t, u2(t), v2(t), w2(t)), x1(t)− x2(t)〉
≥ α(t)‖x1(t)− x2(t)‖2,

for all xi(t) ∈ H, ui(t) ∈ Q(t, xi(t)), vi(t) ∈ R(t, xi(t)), wi(t) ∈
S(t, xi(t)), t ∈ Ω, i = 1, 2;

(ii) (l(N,2)(t), l(N,3)(t), l(N,4)(t))-mixed Lipschitz continuous, if there exist
measurable functions l(N,2), l(N,3), l(N,4) : Ω→ (0,∞) such that

‖N(t, x1(t), y1(t), z1(t))−N(t, x2(t), y2(t), z2(t))‖
≤ l(N,2)(t)‖x1(t)− x2(t)‖+ l(N,3)(t)‖y1(t)− y2(t)‖

+ l(N,4)(t)‖z1(t)− z2(t)‖,

for all xi(t), yi(t), zi(t) ∈ H, t ∈ Ω, i = 1, 2.
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Now, we prove the existence of solution and discuss the convergence criteria
of iterative sequences generated by the Iterative Scheme A, for RGNIVLIP
(3.2).

Theorem 5.4. Let the mappings η : H × H → H be τ -Lipschitz continu-
ous and P : H → H be δ-strongly η-monotone. Let the random mapping
g : Ω×H → H be s(t)-strongly monotone and lg(t)-Lipschitz continuous, and
the random mapping m : Ω ×H → H be lm(t)-Lipschitz continuous. Let the
random mapping P ◦g be r(t)-strongly monotone and lP◦g(t)-Lipschitz contin-
uous, and the random mapping P ◦m be lP◦m(t)-Lipschitz continuous. Let the
random fuzzy mappings Q,R, S, Z : Ω×H → F(H) satisfy the condition (C),

and the random multi-valued mappings Q̃, R̃, S̃, Z̃ : Ω × H → CB(H) be H̃-
Lipschitz continuous with measurable functions lQ̃(t), lR̃(t), lS̃(t), lZ̃(t), respec-

tively. Let the random mapping N : Ω×H×H×H → H be α(t)-strongly mixed

monotone with respect to Q̃, R̃ and S̃, and (L(N,2)(t), L(N,3)(t), L(N,4)(t))-mixed
Lipschitz continuous. Suppose that the random multi-valued mapping M : Ω×
H×H → 2H is such that for each (t, z(t)) ∈ Ω×H, M(t, ·, z(t)) : H → 2H is γ-
strongly maximal P -η-monotone with (g−m)(Ω×H)∩domainM(t, ·, z(t)) 6= ∅.
Suppose that there exists a measurable function k : Ω→ (0,∞) such that

‖RM(t,·,z1(t))
P,η (x(t))−RM(t,·,z2(t))

P,η (x(t))‖ ≤ k(t)‖z1(t)− z2(t)‖, (5.1)

for all x(t), z1(t), z2(t) ∈ H, t ∈ Ω, and suppose that for a measurable function
ρ : Ω→ (0,∞), the following condition holds, for all t ∈ Ω,

θ(t) := q(t) +
τ

δ + ρ(t)γ

[
p(t) +

√
1− 2ρ(t)α(t) + ρ2(t)L2

N (t)
]
< 1, (5.2)

where

q(t) := lm(t) + k(t)lZ̃(t) +
√

1− 2s(t) + l2g(t),

p(t) := lP◦m(t) +
√

1− 2r(t) + l2P◦g(t)

and

LN (t) := L(N,2)(t)lQ̃(t) + L(N,3)(t)lR̃(t) + L(N,4)(t)lS̃(t).

Then, there exist measurable mappings x, u, v, w, z : Ω → H such that (3.2)
holds. Moreover, xn(t) → x(t), un(t) → u(t), vn(t) → v(t), wn(t) → w(t),
zn(t) → z(t), where {xn(t)}, {un(t)}, {vn(t)}, {wn(t)}, {zn(t)} are random
sequences generated by Iterative Scheme A.

Proof. From Iterative Scheme A, (5.1) and Theorem 2.17, for any t ∈ Ω, we
have
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‖xn+2(t)− xn+1(t)‖
≤ ‖xn+1(t)− xn(t)− (g −m)(t, xn+1(t)) + (g −m)(t, xn(t))‖

+ ‖RM(t,·,zn+1(t))
P,η [h(t, xn+1(t))]−RM(t,·,zn(t))

P,η [h(t, xn+1(t))]‖

+ ‖RM(t,·,zn(t))
P,η [h(t, xn+1(t))]−RM(t,·,zn(t))

P,η [P ◦ (g −m)(t, xn(t))

− ρ(t)N(t, un(t), vn(t), wn(t))]‖,

where

h(t, xn+1(t))=P ◦ (g −m)(t, xn+1(t))−ρ(t)N(t, un+1(t), vn+1(t), wn+1(t)).

Hence, we have

‖xn+2(t)− xn+1(t)‖
≤ ‖xn+1(t)− xn(t)− (g(t, xn+1(t))− g(t, xn(t)))‖

+ ‖m(t, xn+1(t))−m(t, xn(t))‖+ k(t)‖zn+1(t)− zn(t)‖

+
τ

δ + ρ(t)γ

[
‖xn+1(t)− xn(t)− (P ◦ g(t, xn+1(t))− P ◦ g(t, xn(t)))‖

+ ‖P ◦m(t, xn+1(t))− P ◦m(t, xn(t))‖
+ ‖xn+1(t)− xn(t)− ρ(t)(N(t, un+1(t), vn+1(t), wn+1(t))

−N(t, un(t), vn(t), wn(t)))‖
]
. (5.3)

Since g is s(t)-strongly monotone and lg(t)-Lipschitz continuous, we have

‖xn+1(t)− xn(t)− (g(t, xn+1(t))− g(t, xn(t)))‖

≤
√

1− 2s(t) + l2g(t) ‖xn+1(t)− xn(t)‖. (5.4)

Again since P ◦ g is r(t)-strongly monotone and lP◦g(t)-Lipschitz continuous,

m is lm(t)-Lipschitz continuous, P ◦ m is lP◦m(t)-Lipschitz continuous, Z̃ is

lZ̃(t)-H̃-Lipschitz continuous, we have

‖xn+1(t)− xn(t)− (P ◦ g(t, xn+1(t))− P ◦ g(t, xn(t)))‖

≤
√

1− 2r(t) + l2P◦g(t) ‖xn+1(t)− xn(t)‖, (5.5)

‖m(t, xn+1(t))−m(t, xn(t))‖ ≤ lm(t)‖xn+1(t)− xn(t)‖, (5.6)

‖P ◦m(t, xn+1(t))− P ◦m(t, xn(t))‖ ≤ lP◦m(t)‖xn+1(t)− xn(t)‖, (5.7)
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and

‖zn+1(t)− zn(t)‖ ≤ (1 + (1 + n)−1)H̃(Z̃(t, xn+1(t)), Z̃(t, xn(t)))

≤ (1 + (1 + n)−1) lZ̃(t)‖xn+1(t)− xn(t)‖. (5.8)

Since for each fixed t ∈ Ω, Q̃, R̃, S̃ are H̃-Lipschitz continuous with constants
lQ̃(t), lR̃(t), lS̃(t), respectively, N is α(t)-strongly mixed monotone with respect

to Q̃, R̃ and S̃, and (L(N,2)(t), L(N,3)(t), L(N,4)(t))-mixed Lipschitz continuous,
we have

‖N(t, un+1(t), vn+1(t), wn+1(t))−N(t, un(t), vn(t), wn(t))‖
≤ l(N,2)(t)‖un+1(t)− un(t)‖+ l(N,3)(t)‖vn+1(t)− vn(t)‖

+ l(N,4)(t)‖wn+1(t)− wn(t)‖

≤ (1 + (1 + n)−1)
(
l(N,2)(t) H̃(Q̃(t, xn+1(t)) , Q̃(t, xn(t)))

+ l(N,3)(t) H̃(R̃(t, xn+1(t)) , R̃(t, xn(t)))

+ l(N,4)(t)H̃(S̃(t, xn+1(t)) , S̃(t, xn(t)))
)

≤ (1 + (1 + n)−1)
(
l(N,2)(t)lQ̃(t) + l(N,3)(t)lR̃(t)

+ l(N,4)(t)lS̃(t)
)
‖xn+1(t)− xn(t)‖ (5.9)

and

‖xn+1(t)− xn(t)− ρ(t)(N(t, un+1(t), vn+1(t), wn+1(t))

−N(t, un(t), vn(t), wn(t)))‖2

≤ ‖xn+1(t)− xn(t)‖2 − 2ρ(t)〈N(t, un+1(t), vn+1(t), wn+1(t))

−N(t, un(t), vn(t), wn(t)), xn+1(t)− xn(t)〉
+ ρ2(t)‖N(t, un+1(t), vn+1(t), wn+1(t))−N(t, un(t), vn(t), wn(t))‖2

≤ (1− 2ρ(t)α(t) + ρ2(t)L2
N (t)) ‖xn+1(t)− xn(t)‖2. (5.10)

From (5.3)-(5.10), it follows that

‖xn+2(t)− xn+1(t)‖ ≤ θn(t) ‖xn+1(t)− xn(t)‖, ∀ t ∈ Ω, (5.11)

where

θn(t) : =
{√

1− 2s(t) + l2g(t) + lm(t) + k(t)lZ̃(t)(1 + (1 + n)−1)

+
τ

δ + ρ(t)γ

[
lP◦m(t) +

√
1− 2r(t) + l2P◦g(t)

+
√

1− 2ρ(t)α(t) + (1 + (1 + n)−1)2ρ2(t)L2
N (t)

]}
. (5.12)
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Letting n→∞, we have θn(t)→ θ(t) for all t ∈ Ω, where

θ(t) : =
{√

1− 2s(t) + l2g(t) + lm(t) + k(t)lZ̃(t)

+
τ

δ + ρ(t)γ

[
lP◦m(t) +

√
1− 2r(t) + l2P◦g(t)

+
√

1− 2ρ(t)α(t) + ρ2(t)L2
N (t)

]}
, (5.13)

where LN (t) := L(N,2)(t)lQ̃(t) + L(N,3)(t)lR̃(t) + L(N,4)(t)lS̃(t).

By condition (5.2), θ(t) ∈ (0, 1) for all t ∈ Ω. Hence for any t ∈ Ω, θn(t) < 1
for n sufficiently large. Therefore (5.11) implies that {xn(t)} is a Cauchy
sequence in H. Since H is complete, there exists a measurable mapping x :
Ω → H such that xn(t) → x(t), for all t ∈ Ω. Further, it follows from H̃-

Lipschitz continuity of Q̃ and Iterative Scheme A, we have

‖un+1(t)− un(t)‖ ≤ (1 + (1 + n)−1)lQ̃(t)‖xn+1(t)− xn(t)‖

which implies that {un(t)} is a Cauchy sequence in H. Similarly, we can prove
that {vn(t)}, {wn(t)}, {zn(t)} are Cauchy sequences in H. Hence, there exist
measurable mappings v, w, z : Ω → H such that vn(t) → v(t), wn(t) → w(t),
zn(t)→ z(t) as n→∞, for all t ∈ Ω.

Furthermore, for any t ∈ Ω, we have

d(u(t), Q̃(t, x(t))) ≤ ‖u(t)− un(t)‖+ d(un(t) , Q̃(t, x(t)))

≤ ‖u(t)− un(t)‖+ H̃(Q̃(t, xn(t)) , Q̃(t, x(t)))

≤ ‖u(t)− un(t)‖+ lQ̃(t)‖xn(t)− x(t)‖
→ 0 as n→∞.

Hence u(t) ∈ Q̃(t, x(t)) for all t ∈ Ω.

Similarly we can prove that v(t) ∈ R̃(t, x(t)), w(t) ∈ S̃(t, x(t)), z(t) ∈
Z̃(t, x(t)), for all t ∈ Ω. Thus, it follows from Iterative Scheme A, and Lipschitz

continuity of g,m, P ◦ g, P ◦m,RM(t,·,z(t))
P,η , N,M , that x(t) is a fixed point of

random multi-valued mapping G(t, x(t)) defined by (4.1). Hence, by Lemma
4.3, it follows that the set {x(t), u(t), v(t), w(t), z(t)} is a random solution of
RGNIVLIP (3.2). This completes the proof. �

Remark 5.5. For all t ∈ Ω, and measurable functions ρ, k : Ω→ (0,∞), it is
clear that 2r(t) < 1 + l2P◦g(t), 2s(t) < 1 + l2g(t), 2ρ(t)α(t) < 1 + ρ2(t)L2

N (t),

where LN (t) := L(N,2)(t)lQ̃(t) + L(N,3)(t)lR̃(t) + L(N,4)(t)lS̃(t). Further, θ ∈
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(0, 1) and condition (5.2) of Theorem 5.4 holds for some suitable values of
constants.

Remark 5.6. Since the RGNIVLIP (3.2) includes many known classes of
parametric generalized variational inclusions (inequalities) as special cases, so
the technique utilized in this paper can be used to extend and advance the
theorems given by many researchers (see [1,3,6-9,12-18,20-22]).
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