• Title/Summary/Keyword: nonlinear prediction

Search Result 915, Processing Time 0.028 seconds

Apply evolved grey-prediction scheme to structural building dynamic analysis

  • Z.Y. Chen;Yahui Meng;Ruei-Yuan Wang;Timothy Chen
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.19-26
    • /
    • 2024
  • In recent years, an increasing number of experimental studies have shown that the practical application of mature active control systems requires consideration of robustness criteria in the design process, including the reduction of tracking errors, operational resistance to external disturbances, and measurement noise, as well as robustness and stability. Good uncertainty prediction is thus proposed to solve problems caused by poor parameter selection and to remove the effects of dynamic coupling between degrees of freedom (DOF) in nonlinear systems. To overcome the stability problem, this study develops an advanced adaptive predictive fuzzy controller, which not only solves the programming problem of determining system stability but also uses the law of linear matrix inequality (LMI) to modify the fuzzy problem. The following parameters are used to manipulate the fuzzy controller of the robotic system to improve its control performance. The simulations for system uncertainty in the controller design emphasized the use of acceleration feedback for practical reasons. The simulation results also show that the proposed H∞ controller has excellent performance and reliability, and the effectiveness of the LMI-based method is also recognized. Therefore, this dynamic control method is suitable for seismic protection of civil buildings. The objectives of this document are access to adequate, safe, and affordable housing and basic services, promotion of inclusive and sustainable urbanization, implementation of sustainable disaster-resilient construction, sustainable planning, and sustainable management of human settlements. Simulation results of linear and non-linear structures demonstrate the ability of this method to identify structures and their changes due to damage. Therefore, with the continuous development of artificial intelligence and fuzzy theory, it seems that this goal will be achieved in the near future.

Relationship between Steady Flow and Dynamic Rheological Properties for Viscoelastic Polymer Solutions - Examination of the Cox-Merz Rule Using a Nonlinear Strain Measure - (점탄성 고분자 용액의 정상유동특성과 동적 유변학적 성질의 상관관계 -비선헝 스트레인 척도를 사용한 Cox-Merz 법칙의 검증-)

  • 송기원;김대성;장갑식
    • The Korean Journal of Rheology
    • /
    • v.10 no.4
    • /
    • pp.234-246
    • /
    • 1998
  • The objective of this study is to investigate the correlation between steady shear flow (nonlinear behavior) and dynamic viscoelastic (linear behavior) properties for concentrated polymer solutions. Using both an Advanced Rheometic Expansion System(ARES) and a Rheometics Fluids Spectrometer (RFS II), the steady shear flow viscosity and the dynamic viscoelastic properties of concentrated poly(ethylene oxide)(PEO), polyisobutylene(PIB), and polyacrylamide(PAAm) solutions have been measured over a wide range of shear rates and angular frequencies. The validity of some previously proposed relationships was compared with experimentally measured data. In addition, the effect of solution concentration on the applicability of the Cox-Merz rule was examined by comparing the steady flow viscosity and the magnitude of the complex viscosity Finally, the applicability of the Cox-Merz rule was theoretically discussed by introducing a nonlinear strain measure. Main results obtained from this study can be summarized as follows : (1) Among the previously proposed relationships dealt with in this study, the Cox-Merz rule implying the equivalence between the steady flow viscosity and the magnitude of the complex viscosity has the best validity. (2) For polymer solutions with relatively lower concentration, the steady flow viscosity is higher than the complex viscosity. However, such a relation between the two viscosities is reversed for highly concentrated polymer solutions. (3) A nonlinear strain measure is decreased with increasing stran magnitude, after reaching the maximum value in small strain range. This behavior is different from the theoretical prediction demonstrating the shape of a damped oscillatory function. (4) The applicability of the Cox-Merz rule is influenced by the $\beta$ value, which indicates the slope of a nonlinear stain measure (namely, the degree of nonlinearity) at large shear deformations. The Cox-Merz rule shows better applicability as the $\beta$ value becomes smaller.

  • PDF

The optimal parameter estimation of storage function model based on the dynamic effect (동적효과를 고려한 저류함수모형의 최적 매개변수 결정)

  • Kim Jong-Rae;Kim Joo-Cheal;Jeong Dong-Kook;Kim Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.7 s.168
    • /
    • pp.593-603
    • /
    • 2006
  • The basin response to storm is regarded as nonlinearity inherently. In addition, the consistent nonlinearity of hydrologic system response to rainfall has been very tough and cumbersome to be treated analytically. The thing is that such nonlinear models have been avoided because of computational difficulties in identifying the model parameters from recorded data. The parameters of nonlinear system considered as dynamic effects in the conceptual model are optimized as the sum of errors between the observed and computed runoff is minimized. For obtaining the optimal parameters of functions, the historical data for the Bocheong watershed in the Geum river basin were tested by applying the numerical methods, such as quasi-linearization technique, Runge-Kutta procedure, and pattern-search method. The estimated runoff carried through from the storage function with dynamic effects was compared with the one of 1st-order differential equation model expressing just nonlinearity, and also done with Nash model. It was found that the 2nd-order model yields a better prediction of the hydrograph from each storm than the 1st-order model. However, the 2nd-order model was shown to be equivalent to Nash model when it comes to results. As a result, the parameters of nonlinear 2nd-order differential equation model performed from the present study provided not only a considerable physical meaning but also a applicability to Korean watersheds.

Flexural Capacity of Precast Concrete Triple Ribs Slab (프리캐스트 콘크리트 트리플 리브 슬래브의 휨성능)

  • Hwang, Seung-bum;Seo, Soo-yeon;Lee, Kang-cheol;Lee, Seok-hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.3-11
    • /
    • 2016
  • The concern about hollow core PC slab has been increased to improve the workability during a construction of building by reducing self weight of structural members. In this manner, recently, TRS (Tripple Ribs Slab) was developed as a new type of half PC slab system. TRS member consists of the triple webs and the bottom flange prestressed by strands. The slab system is completed by casting of topping concrete on the TRS after filling styrofoam between the webs. This paper, presents a flexural experiment to investigate the flexural capacity of the TRS. Five full scale TRS members were made and tested under simple support condition to be failed by flexure and their strength was evaluated by code equations; the variables in the test are the depth and the presence of topping or raised spot formed when slip-forming. In addition, a nonlinear sectional analysis was performed for the specimens and the result was compared with the test results. From the study, it was found that the TRS has enough flexural strength and ductility to resist the design loads and its strength can be suitably predicted by using code equations. The raised spot did not affect the strength so that the spot need not to be removed by doing additional work. For the more accurate prediction of TRS's flexural behavior by using nonlinear sectional analysis, it is recommended to consider the concrete's brittle property due to slip-forming process in the modeling.

Development of groundwater level monitoring and forecasting technique for drought analysis (II) - Groundwater drought forecasting Using SPI, SGI and ANN (가뭄 분석을 위한 지하수위 모니터링 및 예측기법 개발(II) - 표준강수지수, 표준지하수지수 및 인공신경망을 이용한 지하수 가뭄 예측)

  • Lee, Jeongju;Kang, Shinuk;Kim, Taeho;Chun, Gunil
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.11
    • /
    • pp.1021-1029
    • /
    • 2018
  • A primary objective of this study is to develop a drought forecasting technique based on groundwater which can be exploit for water supply under drought stress. For this purpose, we explored the lagged relationships between regionalized SGI (standardized groundwater level index) and SPI (standardized precipitation index) in view of the drought propagation. A regional prediction model was constructed using a NARX (nonlinear autoregressive exogenous) artificial neural network model which can effectively capture nonlinear relationships with the lagged independent variable. During the training phase, model performance in terms of correlation coefficient was found to be satisfactory with the correlation coefficient over 0.7. Moreover, the model performance was described by root mean squared error (RMSE). It can be concluded that the proposed approach is able to provide a reliable SGI forecasts along with rainfall forecasts provided by the Korea Meteorological Administration.

Nonlinear Time Series Prediction Modeling by Weighted Average Defuzzification Based on NEWFM (NEWFM 기반 가중평균 역퍼지화에 의한 비선형 시계열 예측 모델링)

  • Chai, Soo-Han;Lim, Joon-Shik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.4
    • /
    • pp.563-568
    • /
    • 2007
  • This paper presents a methodology for predicting nonlinear time series based on the neural network with weighted fuzzy membership functions (NEWFM). The degree of classification intensity is obtained by bounded sum of weighted fuzzy membership functions extracted by NEWFM, then weighted average defuzzification is used for predicting nonlinear time series. The experimental results demonstrate that NEWFM has the classification capability of 92.22% against the target class of GDP. The time series created by NEWFM model has a relatively close approximation to the GDP which is a typical business cycle indicator, and has been proved to be a useful indicator which has the turning point forecasting capability of average 12 months in the peak point and average 6 months in the trough point during 5th to 8th cyclical period. In addition, NEWFM measures the efficiency of the economic indexes by the feature selection and enables the users to forecast with reduced numbers of 7 among 10 leading indexes while improving the classification rate from 90% to 92.22%.

Impact of the Crossed-Structures Installed in Streams and Prediction of Fish Abundance in the Seomjin River System, Korea (하천에 설치된 횡구조물의 영향 및 섬진강 수계의 어류 풍부도 예측)

  • Moon, Woon Ki;Noh, Da Hye;Yoo, Jae Sang;Lim, O Young;Kim, Myoung Chul;Kim, Ji Hye;Lee, Jeong Min;Kim, Jai Ku
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.2
    • /
    • pp.100-106
    • /
    • 2022
  • The relationships between river length and weir density versus fish species observed were analyzed for 210 local rivers in the Seomjin River system (SJR). A nonlinear exponential relationship between river length and number of fish species were observed. Model coefficient was 0.03 and coefficient of determinant (R2) was 0.59, meaning that about 59.0% of total variance was explained by river length variable. Predicted value by model and observed number of species showed a difference. About 110 local rivers (about 52.4%) showed lower value than predictive value. The average index of weir's density (IWD) in the SJR was about 2.7/km, which was significantly higher than that of other river basins. As a result of nonparametric 2-Kimensional Kolmogorov-Smirnov (2-DKS) analysis based on the IWD, the threshold value affecting fish diversity was about 2.5/km (Dmax=0.048, p<0.05). Above the threshold value, it means that the number of fish species would be decreased. In fact, the ratio of the expected species to the observed species was lowered to less than 70%, when the IWD is higher than the threshold value. To maintain aquatic ecological connectivity in future, it is necessary to manage IWD below the threshold value.

Reliability of mortar filling layer void length in in-service ballastless track-bridge system of HSR

  • Binbin He;Sheng Wen;Yulin Feng;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.91-102
    • /
    • 2023
  • To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.

Soft Sensor Development for Predicting the Relative Humidity of a Membrane Humidifier for PEM Fuel Cells (고분자 전해질 연료전지용 막가습기의 상대습도 추정을 위한 소프트센서 개발)

  • Han, In Su;Shin, Hyun Khil
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.5
    • /
    • pp.491-499
    • /
    • 2014
  • It is important to accurately measure and control the relative humidity of humidified gas entering a PEM (polymer electrolyte membrane) fuel cell stack because the level of humidification strongly affects the performance and durability of the stack. Humidity measurement devices can be used to directly measure the relative humidity, but they cost much to be equipped and occupy spaces in a fuel cell system. We present soft sensors for predicting the relative humidity without actual humidity measuring devices. By combining FIR (finite impulse response) model with PLS (partial least square) and SVM (support vector machine) regression models, DPLS (dynamic PLS) and DSVM (dynamic SVM) soft sensors were developed to correctly estimate the relative humidity of humidified gases exiting a planar-type membrane humidifier. The DSVM soft sensor showed a better prediction performance than the DPLS one because it is able to capture nonlinear correlations between the relative humidity and the input data of the soft sensors. Without actual humidity sensors, the soft sensors presented in this work can be used to monitor and control the humidity in operation of PEM fuel cell systems.

Synchronization of Dynamical Happiness Model

  • Bae, Youngchul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.91-97
    • /
    • 2014
  • Chaotic dynamics is an active research area in fields such as biology, physics, sociology, psychology, physiology, and engineering. Interest in chaos is also expanding to the social sciences, such as politics, economics, and societal events prediction. Most people pursue happiness, both spiritual and physical in many cases. However, happiness is not easy to define, because people differ in how they perceive it. Happiness can exist in mind and body. Therefore, we need to be happy in both simultaneously to achieve optimal happiness. To do this, we need to synchronize mind and body. In this paper, we propose a chaotic synchronization method in a mathematical model of happiness organized by a second-order ordinary differential equation with external force. This proposed mathematical happiness equation is similar to Duffing's equation, because it is derived from that equation. We introduce synchronization method from our mathematical happiness model by using the derived Duffing equation. To achieve chaotic synchronization between the human mind and body, we apply an idea of mind/body unity originating in Oriental philosophy. Of many chaotic synchronization methods, we use only coupled synchronization, because this method is closest to representing mind/body unity. Typically, coupled synchronization can be applied only to non-autonomous systems, such as a modified Duffing system. We represent the result of synchronization using a differential time series mind/body model.