DOI QR코드

DOI QR Code

Nonlinear Time Series Prediction Modeling by Weighted Average Defuzzification Based on NEWFM

NEWFM 기반 가중평균 역퍼지화에 의한 비선형 시계열 예측 모델링

  • Chai, Soo-Han (Department of E-Commerce Software, Kyungwon University) ;
  • Lim, Joon-Shik (Department of E-Commerce Software, Kyungwon University)
  • 채수한 (경원대학교 소프트웨어학부) ;
  • 임준식 (경원대학교 소프트웨어학부)
  • Published : 2007.08.25

Abstract

This paper presents a methodology for predicting nonlinear time series based on the neural network with weighted fuzzy membership functions (NEWFM). The degree of classification intensity is obtained by bounded sum of weighted fuzzy membership functions extracted by NEWFM, then weighted average defuzzification is used for predicting nonlinear time series. The experimental results demonstrate that NEWFM has the classification capability of 92.22% against the target class of GDP. The time series created by NEWFM model has a relatively close approximation to the GDP which is a typical business cycle indicator, and has been proved to be a useful indicator which has the turning point forecasting capability of average 12 months in the peak point and average 6 months in the trough point during 5th to 8th cyclical period. In addition, NEWFM measures the efficiency of the economic indexes by the feature selection and enables the users to forecast with reduced numbers of 7 among 10 leading indexes while improving the classification rate from 90% to 92.22%.

본 논문은 가중 퍼지소속함수 기반 신경망(Neural Network with Weighted Fuzzy Membership Functions, NEWFM)을 이용하여 클래스의 분류강도를 구하고 비선형 시계열 추이선을 예측하는 방안을 제안하고 있다. NEWFM에 의하여 추출된 가중퍼지 소속함수(BSWFM)를 이용하여 입력값에 대한 분류강도를 구하게 되고, 이들에 대한 가중평균 역퍼지화를 통하여 비선형 시계열 추이선을 작성한다. 실증분석결과 NEWFM은 목표 클래스로 설정된 GDP에 대하여 92.22%의 분류성능을 보여 주었다. 따라서 동 비선형 시계열 추이선은 대표적인 경기지표인 GDP 추이에 비교적 높은 유사도를 나타내는 가운데 분석대상기간인 제5순환기-제8순환기 중 정점(peak)에서 평균 12개월, 저점(trough)에서 평균 6개월의 선행성(look-ahead)을 보여 줌으로써 경기변동에 앞서 상당기간의 시차를 둔 예측지표로서 활용가능성이 입증되었다. NEWFM은 그 특징선택(feature selection)에 의하여 선행지표 10개 중 3개의 축소를 기할 수 있게 해 줌으로써 보다 적은 수의 경제지표를 가지고도 분류성능을 90.0%에서 92.22%로 향상을 기하는 가운데 효율적인 예측기능을 수행할 수 있음이 입증되었다.

Keywords

References

  1. G. A. Carpenter, S. Grossberg and J. Reynolds, 'ARTMAP: Supervised real-time learning and classification of nonstationary data by a self-organizing neural network,' Neural Networks, Vol.4, pp.565-588, 1991 https://doi.org/10.1016/0893-6080(91)90012-T
  2. A. F. Gomez -Skarmeta, M. V. F. Jimenez, J. G. Marin-Blazoues, 'Approximative Fuzzy Rules Approaches for Classification with Hybrid-GA Techniques,' Informaion Sciences, Vol.136, pp.193-214, 2001 https://doi.org/10.1016/S0020-0255(01)00148-7
  3. H. Ishibuchi and T. Nakashima, 'Voting in Fuzzy Rule-Based Systems for Pattern Classification Problems,' Fuzzy Sets and Systems, Vol.103, pp.223-238, 1999 https://doi.org/10.1016/S0165-0114(98)00223-1
  4. R. Jang, 'ANFIS: Adaptive network-based fuzzy inference system,' IEEE Trans. Syst., Man, Cybern., Vol.23, pp.665- 685, May-June, 1993 https://doi.org/10.1109/21.256541
  5. Joan. S. Lim, D. Wang, Y-S. Kim, and S. Gupta, 'A neuro-fuzzy approach for diagnosis of antibody deficiency syndrome,' Neurocomputing 69, Issues 7-9, pp. 969-974, March 2006 https://doi.org/10.1016/j.neucom.2005.06.009
  6. Ioon S. Lim, T-W Ryu, H-J Kim, and S. Gupt a, 'Feature Selection for Specific Antibody Deficiency Syndrome by Neural Network with Weighted Fuzzy Membership Functions,' FSKD 2005 (LNCS 3614), pp. 811-820, Springer-Verlag, Aug. 2006
  7. Joon. S. Lim, T-W Ryu, H-J Kim, and S. Gupta, 'Feature Selection for Specific Antibody Deficiency Syndrome by Neural Network with Weighted Fuzzy Membership Functions,' LNCS 3614, pp. 811-820, Springer-Verlag, Aug. 2005
  8. C. F. Iuang and C. T. Lin, 'An On-Line Self-Constructing Neural Fuzzy Inference Network and Its Applications,' IEEE Trans. Fuzzy Systems, Vol.6, No.1, pp.12-32, 1998 https://doi.org/10.1109/91.660805
  9. N. Kasabov, Foundation of Neural Networks, Fuzzy Systems and Knowledge Engineering, The MIT Press, Cambridge, MA, 1996
  10. T. Kasuba, 'Simplified Fuzzy ARTMAP,' IEEE AI Expert, pp.19-25, Nov., 1993
  11. Ho J. Kim, Tae W. Ryu, Thai T. Nguyen, Joon S. Lim, and Sudhir Gupta, 'A Modified Fuzzy Min-Max Neural Network for Pattern Classification,' Computational Science and Its Applications ICCSA 2004 (LNCS 3046), pp.792-798, Springer-Verlag, 2004
  12. H.-M. Lee, K.-H. Chen and I-F. Jiang, 'A Neural Networks with Disjunctive Fuzzy Information,' Neural Networks, Vol.11, pp. 1113-1125, 1998 https://doi.org/10.1016/S0893-6080(98)00058-6
  13. Joon Shik Lim, 'Finding Fuzzy Rules by Neural Network with Weighted Fuzzy Membership Function,' International Journal of Fuzzy Logic and Intelligent Systems, Vol. 4, No.2, pp.211-217, September, 2004 https://doi.org/10.5391/IJFIS.2004.4.2.211
  14. C. T. Lin and C. S. George Lee, 'Neural-network- based fuzzy logic control and decision system,' IEEE Trans. Computers, Vol.40, No.12, Dec., 1991
  15. D. Nauck and R. Kruse, 'A Neuro-Fuzzy Method to Learn Fuzzy Classification Rules from Data,' Fuzzy Sets and Systems, Vol.89, pp.277-288, 1997 https://doi.org/10.1016/S0165-0114(97)00009-2
  16. M. Setnes and H. Roubos, 'GA-Fuzzy Modeling and Classification: Complexity and Performance,' IEEE Trans., Fuzzy Systems, Vol.8, No.5, pp.509-522, 2000 https://doi.org/10.1109/91.873575
  17. P. Simpson, 'Fuzzy min-max neural networks- Part 1: Classification,' IEEE Trans., Neural Networks, Vol.3, pp. 776-786, 1992 https://doi.org/10.1109/72.159066
  18. T. Takagi, M. Sugeno, 'Fuzzy Identification of Systems and Its Applications to Modeling and Control,' IEEE Trans., Syst. Man, Cybern., Vol. 15, pp.116-132, 1985
  19. K. Tanaka, M. Sano and H. Watanabe, 'Modeling and Control of Carbon Monoxide Concentration Using a Neuro-Fuzzy technique,' IEEE Trans., Fuzzy Systems, Vol.3, pp.271-279, June, 1995 https://doi.org/10.1109/91.413233
  20. C. Z. Ye, J. Yang, D. Y. Geng, Y. Zhou, N. Y. Chen, Fuzzy Rules to Predict Degree of Malignancy in Brain Glioma, Medical and Biological Engineering and Computing, Vol.40, 2002
  21. J. S. Wang and C. S. G. Lee, 'Self-Adaptive Neuro-Fuzzy Inference System for Classification Applications,' IEEE Trans., Fuzzy Systems, Vol.10, No.6, pp.790-802, 2002 https://doi.org/10.1109/TFUZZ.2002.805880