References
- G. A. Carpenter, S. Grossberg and J. Reynolds, 'ARTMAP: Supervised real-time learning and classification of nonstationary data by a self-organizing neural network,' Neural Networks, Vol.4, pp.565-588, 1991 https://doi.org/10.1016/0893-6080(91)90012-T
- A. F. Gomez -Skarmeta, M. V. F. Jimenez, J. G. Marin-Blazoues, 'Approximative Fuzzy Rules Approaches for Classification with Hybrid-GA Techniques,' Informaion Sciences, Vol.136, pp.193-214, 2001 https://doi.org/10.1016/S0020-0255(01)00148-7
- H. Ishibuchi and T. Nakashima, 'Voting in Fuzzy Rule-Based Systems for Pattern Classification Problems,' Fuzzy Sets and Systems, Vol.103, pp.223-238, 1999 https://doi.org/10.1016/S0165-0114(98)00223-1
- R. Jang, 'ANFIS: Adaptive network-based fuzzy inference system,' IEEE Trans. Syst., Man, Cybern., Vol.23, pp.665- 685, May-June, 1993 https://doi.org/10.1109/21.256541
- Joan. S. Lim, D. Wang, Y-S. Kim, and S. Gupta, 'A neuro-fuzzy approach for diagnosis of antibody deficiency syndrome,' Neurocomputing 69, Issues 7-9, pp. 969-974, March 2006 https://doi.org/10.1016/j.neucom.2005.06.009
- Ioon S. Lim, T-W Ryu, H-J Kim, and S. Gupt a, 'Feature Selection for Specific Antibody Deficiency Syndrome by Neural Network with Weighted Fuzzy Membership Functions,' FSKD 2005 (LNCS 3614), pp. 811-820, Springer-Verlag, Aug. 2006
- Joon. S. Lim, T-W Ryu, H-J Kim, and S. Gupta, 'Feature Selection for Specific Antibody Deficiency Syndrome by Neural Network with Weighted Fuzzy Membership Functions,' LNCS 3614, pp. 811-820, Springer-Verlag, Aug. 2005
- C. F. Iuang and C. T. Lin, 'An On-Line Self-Constructing Neural Fuzzy Inference Network and Its Applications,' IEEE Trans. Fuzzy Systems, Vol.6, No.1, pp.12-32, 1998 https://doi.org/10.1109/91.660805
- N. Kasabov, Foundation of Neural Networks, Fuzzy Systems and Knowledge Engineering, The MIT Press, Cambridge, MA, 1996
- T. Kasuba, 'Simplified Fuzzy ARTMAP,' IEEE AI Expert, pp.19-25, Nov., 1993
- Ho J. Kim, Tae W. Ryu, Thai T. Nguyen, Joon S. Lim, and Sudhir Gupta, 'A Modified Fuzzy Min-Max Neural Network for Pattern Classification,' Computational Science and Its Applications ICCSA 2004 (LNCS 3046), pp.792-798, Springer-Verlag, 2004
- H.-M. Lee, K.-H. Chen and I-F. Jiang, 'A Neural Networks with Disjunctive Fuzzy Information,' Neural Networks, Vol.11, pp. 1113-1125, 1998 https://doi.org/10.1016/S0893-6080(98)00058-6
- Joon Shik Lim, 'Finding Fuzzy Rules by Neural Network with Weighted Fuzzy Membership Function,' International Journal of Fuzzy Logic and Intelligent Systems, Vol. 4, No.2, pp.211-217, September, 2004 https://doi.org/10.5391/IJFIS.2004.4.2.211
- C. T. Lin and C. S. George Lee, 'Neural-network- based fuzzy logic control and decision system,' IEEE Trans. Computers, Vol.40, No.12, Dec., 1991
- D. Nauck and R. Kruse, 'A Neuro-Fuzzy Method to Learn Fuzzy Classification Rules from Data,' Fuzzy Sets and Systems, Vol.89, pp.277-288, 1997 https://doi.org/10.1016/S0165-0114(97)00009-2
- M. Setnes and H. Roubos, 'GA-Fuzzy Modeling and Classification: Complexity and Performance,' IEEE Trans., Fuzzy Systems, Vol.8, No.5, pp.509-522, 2000 https://doi.org/10.1109/91.873575
- P. Simpson, 'Fuzzy min-max neural networks- Part 1: Classification,' IEEE Trans., Neural Networks, Vol.3, pp. 776-786, 1992 https://doi.org/10.1109/72.159066
- T. Takagi, M. Sugeno, 'Fuzzy Identification of Systems and Its Applications to Modeling and Control,' IEEE Trans., Syst. Man, Cybern., Vol. 15, pp.116-132, 1985
- K. Tanaka, M. Sano and H. Watanabe, 'Modeling and Control of Carbon Monoxide Concentration Using a Neuro-Fuzzy technique,' IEEE Trans., Fuzzy Systems, Vol.3, pp.271-279, June, 1995 https://doi.org/10.1109/91.413233
- C. Z. Ye, J. Yang, D. Y. Geng, Y. Zhou, N. Y. Chen, Fuzzy Rules to Predict Degree of Malignancy in Brain Glioma, Medical and Biological Engineering and Computing, Vol.40, 2002
- J. S. Wang and C. S. G. Lee, 'Self-Adaptive Neuro-Fuzzy Inference System for Classification Applications,' IEEE Trans., Fuzzy Systems, Vol.10, No.6, pp.790-802, 2002 https://doi.org/10.1109/TFUZZ.2002.805880