DOI QR코드

DOI QR Code

Interval-valued Fuzzy Soft Sets

  • Published : 2007.08.25

Abstract

This paper extends the work of Maji et al. (2001) to present the concept of interval-valued fuzzy soft sets and to present an algorithm for finding where the degree of membership are represented by interval values in [0, 1]. The proposed method is more flexible than the one presented in Maji et at. (2001) due to the fact that it allows the degrees of membership of object for parameters to be represented by interval-values rather than crisp real values between zero and one.

Keywords

References

  1. K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87-96 https://doi.org/10.1016/S0165-0114(86)80034-3
  2. K. Atanassov, More on intuitionistic fuzzy sets, Fuzzy Sets and Systems 33 (1989), 37-46 https://doi.org/10.1016/0165-0114(89)90215-7
  3. K. Atanassov, Operators over interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems 64 (1994), 159-174 https://doi.org/10.1016/0165-0114(94)90331-X
  4. D. Dubois, W. Ostasiewicz and H. Prade, Fuzzy sets: history and basic notions, in: D. Dubois and H. Prade (Eds), Fundamentals of Fuzzy Sets, Kluwer Academic Publishers, Dordrecht, 2000, 80-93
  5. W.L. Gau and D.J. Buehrer, Vague sets, IEEE Trans. Systems Man Cybernet. 23 (1993), 610-614 https://doi.org/10.1109/21.229476
  6. J. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18 (1967), 145-147 https://doi.org/10.1016/0022-247X(67)90189-8
  7. M.B. Gorzalczany, A method of inference in approximate reasoning based on interval valued fuzzy sets, Fuzzy Sets and Systems 21 (1987), 1-17 https://doi.org/10.1016/0165-0114(87)90148-5
  8. E.E. Kerre, A first view on the alternatives of fuzzy set theory, in: B. Reusch and K.H. Temme (Eds), Computational Intelligence in Theory and Pratice, Physica-Verlag, Heidelberg, 2001, 55-72
  9. P.K Maji, R. Biswas and A.R. Roy, Fuzzy soft sets, J. Fuzzy Math. 9 (2001), 589-602
  10. P.K Maji, R. Biswas and A.R. Roy, On soft set theory, Comput. Math. Appl, 45 (2003), 555-562 https://doi.org/10.1016/S0898-1221(03)00016-6
  11. P.K. Maji, A.R. Roy and R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl. 44 (2002), 1077-1083 https://doi.org/10.1016/S0898-1221(02)00216-X
  12. D. Molodtsov, Soft set theory-First results, Comput. Math. Appl. 37 (1999), 19-31
  13. H. Prade and D. Dubois, Fuzzy Set and Systems Theory and Applications, Academic Press, London, 1980
  14. Z. Pawlak, Rough sets, Internat. J. Comput. Inform. Sci. 11 (1982), 341-356 https://doi.org/10.1007/BF01001956
  15. Z. Pawlak, Rough Sets: Theoretical aspects of reasoning about data, Kluwer Academic Publishers, Boston, 1991
  16. Sambuc, Fonctios $\phi$-floues, Application it a l'aide au diagnostic en pathologie thyroidienne, Ph.D. Thesis, Univ. Marseille, France, 1975
  17. L.A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965) 338-353 https://doi.org/10.1016/S0019-9958(65)90241-X
  18. H.J. Zimmerman, Fuzzy Set Theory and its Applications, Kluwer Academic Publishers, Boston, 1996

Cited by

  1. A Review on Soft Set-Based Parameter Reduction and Decision Making vol.5, pp.2169-3536, 2017, https://doi.org/10.1109/ACCESS.2017.2682231