• Title/Summary/Keyword: nonlinear observer time-delay control

Search Result 20, Processing Time 0.025 seconds

A State Observer of Nonlinear Systems with Delayed Output (지연된 출력을 갖는 비선형 시스템의 상태 관측기)

  • Lee, Sung-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.613-616
    • /
    • 2012
  • This paper proposes the state observer design for nonlinear systems with delayed output. It is shown that by considering a nonlinear term of error dynamics as an additional state variable, the nonlinear error dynamics with time delay can be transformed into the linear one with time delay. Sufficient conditions for existence of a state observer are characterized by linear matrix inequalities. Finally, an illustrative example is given in order to show the effectiveness of our design method.

An Enhanced Time Delay Observer for Nonlinear Systems

  • Park, Suk-Ho;Chang, Pyung-Hun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.149-156
    • /
    • 2000
  • Time delay observer (TDO), thanks to the time delay control (TDC) concept, requires little knowledge of a plant model, and hence is easy to design, robust to parameter variation and computationally efficient, yet can reconstruct states rather reliable for nonlinear plant. In this paper, we propose an improved version of TDO that solves two problems inherent in TDO as follows: TDO displays large reconstruction errors due to low-frequency uncertainty and has some restrictions on selecting its gains. By introducing a low pass filter and a state associated with it, we obtain an enhanced time delay observer (ETDO). This observer turns out to have smaller reconstruction errors than those of TDO and not to have any restriction on selecting its gains, thereby solving the problems. Through performance comparison by transfer function and simulation, we validate the analysis results of two observers (TDO and ETDO) and evaluate the performances. Finally, through experiments on BLDC motor system, the analysis results are clearly conformed.

  • PDF

A Robust Observer Design for Nonlinear MIMO Plants using Time-Delayed Signals

  • Lee, Jeong-Wan;Chang, Pyung-Hun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.22-31
    • /
    • 1999
  • In this paper, a robust observer design method for nonlinear multi input multi-output(MINO) plants is presented. This method enables the extension of the time delay observer (TDO) for nonlinear SISO plants in the phase variable form to MIMO plants. The designed TDO reconstructs the states of the plant expressed in the generalized observability canonical form (GOBCF), yet requiring neither the transformation of a plant, nor the real time computation coordinates, the observer turned out to be computationally efficient and easy to design for nonlinear MIMO plants. In a simulation of a two-link manipulator with flexible joints, the control performances using TDO appeared to be similar to those using actual states and superior to those using numerical differentiation. Finally, in an experiment with a robot, it was confirmed that the TDO reconstructs the states reliability and TDO can be effectively used in a real closed-loop system.

  • PDF

Robust State Observer for Lipschitz Nonlinear Systems with Time Delay (시간 지연을 갖는 Lipschitz 비선형 시스템의 강인 상태 관측기)

  • Lee, Sung-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1089-1093
    • /
    • 2008
  • This paper presents a robust state observer design for a class of Lipschitz nonlinear systems with time delay and external disturbance. Sufficient conditions on the existence of the proposed observer are characterized by linear matrix inequalities. It is also shown that the proposed observer design can reduce the effect on the estimation error of external disturbance up to the prescribed level in spite of the existence of time delay. Finally, a numerical example is provided to verify the proposed design method.

Observer Design for Discrete-Time Nonlinear Systems with Output Delay (출력지연을 갖는 이산시간 비선형 시스템의 관측기 설계)

  • Lee, Sung-Ryul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.26-30
    • /
    • 2012
  • This paper presents the observer design method for discrete-time nonlinear systems with delayed output. It is shown that by considering a nonlinear term of error dynamics as an additional state variable, the discrete-time nonlinear error dynamics with time delay can be transformed into the discrete-time linear one with time delay. Sufficient conditions for existence of state observer are characterized by linear matrix inequalities. Finally, an illustrative example is given in order to show the effectiveness of our design method.

Design of Fuzzy Output Feedback Controller for The Nonlinear Systems with Time -Delay

  • Shin, Hyun-Seok;Kim, Eun-Tai;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.559-564
    • /
    • 2002
  • This Paper Proposes a design method of a fuzzy output feedback controller for the nonlinear systems with the unknown time- delay. Recently, Cao et ai. proposed a stabilization method for the nonlinear time-delay systems using a fuzzy controller when the time-delay is known. However, the time-delay is likely to be unknown in practical. We represent the nonlinear systems with the unknown time-delay by Takagi-Sugeno (T-5) fuzzy model and design the fuzzy observer and the parallel distributed compensation (PDC) law based on this observer. By applying Lyapunov-Krasovskii theorem to the closed-loop system, the sufficient condition for the asymptotic stability of the equilibrium Point is derived and converted into the linear matrix inequality (LMI) Problem.

Missile Autopilot Design for Agile Turn Using Time Delay Control with Nonlinear Observer

  • Lee, Chang-Hun;Kim, Tae-Hun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.266-273
    • /
    • 2011
  • This paper deals with missile autopilot design for agile turn phase in air-to-air engagement scenarios. To attain a fast response, angle-of-attack (AOA) is adopted for an autopilot command structure. Since a high operational AOA is generally required during the agile turn phase, dealing with the aerodynamic uncertainties can be a challenge for autopilot design. As a remedy, a new controller design method based on robust nonlinear control methodology such as time delay control is proposed in this paper. Nonlinear observer is also proposed to estimate the AOA in the presence of the model uncertainties. The performance of the proposed controller with variation of the aerodynamic coefficients is investigated through numerical simulations.

A Study on Robust Control of DC Servo Motor Using Time Delay Control and Observer/Controller Stabilization (시간지연 제어기법을 이용한 DC서보모터 강인제어 및 관측기/제어기 안정화에 관한 연구)

  • 이정완;장평훈;김승호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1029-1040
    • /
    • 1993
  • Recently the Time Delay Control (TDC) method has been proposed as a promising technique in the robust control area, where the plants have nonlinear dynamics with parameter variations and substantial disturbances are present. TDC method, however, requires the measurements of all the state variables, together with their derivatives. This requirement imposes a severe limitation on the applications to most real systems. In order to solve this measurement problem, we proposed an observer design method that can stably reconstruct the state variables and their derivatives. the stability of the overall system has been analyzed and proved. Then, for a simulation study, the controller/observer based on our design method has been applied to a nonlinear plant, the result of which confirmed that the controller/observer performs satisfactorily as predicted, Finally we made experimentations on a DC servo motor that is substantial amount of inertia variations and external disturbances. the results showed that the controller/observer performs quite robustly under those variations and disturbances, and is much less sensitive to sensor noise than the controller using numerical differentiations.

Robust Observer for Nonlinear Systems with Delayed Output (지연된 출력을 갖는 비선형 시스템의 강인 관측기)

  • Lee, Sungryul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.253-257
    • /
    • 2013
  • This paper proposes the robust observer design for nonlinear systems with delayed output and external disturbance. It is shown that by considering a nonlinear term of error dynamics as an additional state variable, the nonlinear error dynamics with time delay can be transformed into the linear one with time delay. Sufficient conditions for existence of a robust observer are characterized by linear matrix inequalities. Finally, an illustrative example is given in order to show the effectiveness of our design method.

Observer Design for A Class of UncertainState-Delayed Nonlinear Systems

  • Lu Junwei;Feng Chunmei;Xu Shengyuan;Chu Yuming
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.448-455
    • /
    • 2006
  • This paper deals with the observer design problem for a class of state-delayed nonlinear systems with or without time-varying norm-bounded parameter uncertainty. The nonlinearities under consideration are assumed to satisfy the global Lipschitz conditions and appear in both the state and measured output equations. The problem we address is the design of a nonlinear observer such that the resulting error system is globally asymptotically stable. For the case when there is no parameter uncertainty, a sufficient condition for the solvability of this problem is derived in terms of linear matrix inequalities and the explicit formula of a desired observer is given. Based on this, the robust observer design problem for the case when parameter uncertainties appear is considered and the solvability condition is also given. Both of the solvability conditions obtained in this paper are delay-dependent. A numerical example is provided to demonstrate the applicability of the proposed approach.