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An Enhanced Time Delay Observer for Nonlinear Systems

Suk-Ho Park and Pyung-Hun Chang

Abstract: Time delay observer (TDO), thanks to the time delay control (TDC) concept, requires little knowledge of a plant model,
and hence is easy to design, robust to parameter variation and computationally efficient, yet can reconstruct states rather reliable for
nonlinear plant. In this paper, we propose an improved version of TDO that solves two problems inherent in TDO as follows: TDO
displays large reconstruction errors due to low-frequency uncertainty and has some restrictions on selecting its gains. By introducing
a low pass filter and a state associated with it, we obtain an enhanced time delay observer (ETDO). This observer turns out to have
smaller reconstruction errors than those of TDO and not to have any restriction on selecting its gains, thereby solving the problems.
Through performance comparison by transfer function and simulation, we validate the analysis results of two observers (TDO and
ETDO) and evaluate the performances. Finally, through experiments on BLDC motor system, the analysis results are clearly con-

firmed.
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I. Introduction

For nonlinear systems, there are several observer structures
that have been reported, which may be summarized as fol-
lows: Kalman filter [1] and Luenberger observer [2] for non-
linear systems, global linearization method [3], pseudo-
linearization method [4], extended linearization method [5],
adaptive scheme observer [6], and sliding mode observer
(SMO) [7] [8].

However, the observer structures above require an accurate
plant model in their equations inevitably accompanies some
practical burdens as follows: without a model, observer cannot
be constructed; even if it is available, unless it is accurate
enough, a reliable state reconstruction could not be expected;
even when a model is accurate enough, the observers could
often become too complicated (due to model complexity) to be
of practical use, especially on real-time basis [9].

In response to these difficulties, the time delay observer

(TDO) was proposed [9]. The essential idea of TDO, which is
adopted from the time delay control (TDC) [10], is the use of
time-delayed signals to estimate both the plant dynamics and
the uncertainties. As the result, TDO requires little knowledge
of a plant model, yet can reconstruct states rather reliably for
nonlinear plant [9]. Hence, it turns out to be simple to con-
struct, easy to implement due to its efficiency, and robust to
parameter variation and disturbance.
For this reason, we believe it worthwhile to enhance it in its
performance, which is exactly the purpose of the research in
this article. The necessity for such an enhancement came from
our observations as follows:

e TDO displays large reconstruction errors due to low-
frequency uncertainty; and

e TDO has some restrictions on selecting its gains: arbitrary
pole-placement is not possible.

Therefore, we attempt to report the existence of the prob-
lems in TDO, investigate their cause, and propose their rem-
edy in terms of a modified observer structure. More specifi-
cally, it will be shown that it is a static filter in TDO that
causes the problems; as the remedy, a new observer called

enhanced time delay observer (ETDO) is proposed, by adopt-
ing a dynamic low pass filter (LPF) and a state associated with
it in place of a static filter. We are going to investigate and
prove through analyses and experiments the reconstruction
accuracy of ETDO and its no restriction on selecting gains.

The rest of the paper is organized as follows: Section 2 will
briefly introduce TDO and investigate its problems. In Section
3, we will propose ETDO, presenting the gain selection
method and the stability analysis. In addition, the improve-
ment through ETDO will be analyzed. In Section 4, through
comparison by transfer function and simulation, we validate
the analysis results and evaluate the performances. In Sec-
tion 5, through experiments of BLDC motor system, the
analysis results are clearly confirmed. Finally, concluding
remarks will be drawn in Section 6.

I1. Review of time delay observer
Consider a class of plants that can be expressed in the
following SISO nonlinear differential equation:

(n)

X

f(x)+g(x)u+d, )

= X,

where! x=[x,5c, ,x("‘”]T =[x, %, ,x] e® denotes
the state vector of the system;  the output; « the control
input; f(x)the system nonlinearity, which may be unknown;
g(x) the nonlinear control distribution scalar, the range (in-
stead of exact value) of which is known; and 4 the unknown
disturbance.

Introducing in (1) a constant, g, that represents a value in
the known range of g(x), we can rearrange (1) into the phase
variable form as follows:

x = Ex+F(xu)+Gou, o)
y = Cx,

where
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' x,y,u,d and all other variables derived from these, including the

reconstructed states Z, are functions of time, ¢. For instance,
z=12(1).
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E" :,:0(,,4),10 I(,,~|):,’ ﬁ‘(x,u) - l:f?((nllxl):l’
Ixn X,u (3)
- 0
—{ (- = :
G = [ gl n],c_[l : O,X(H)],

with 0, denoting an ix; matrix consisting of all zero
elements, I, a kxk identity matrix, and f(x,u) the total
system uncertainty including the system uncertainty and dis-
turbance, which is expressed as

j:(x,u)=[f(x)+g(x)-u+d]—§~u. C))

Note that the system of (2) is globally observable [3].
1. Structure of time delay observer

For the analysis of TDO, we will first summarize TDO
briefly, and then analyze it. More detailed expositions will be
found in [9]. Suppose that for the system of (2), an observer of
the following form is available:

2=Enz+f7(x,u)+é~u—K~(z,—x), 5)

where z= [Zn Zy zﬂ]’ e®R" denotes the reconstructed state
vector and K=[X,,K,, -, K"]T e %" the observer gain vector.
In order to realize this observer, F(x,u) in (5) or f(x,u) in
(4) should be estimated. To this end, instead of using a plant
model, TDO uses time delay estimation (TDE) for the estima-
tion of £ (x,u). In doing so, TDO uses the following assump-
tions: f(x,u)is mostly a continuous function or a piece-wise
continuous function; and the convergence speed of reconstruc-
tion error dynamics can be made much faster than that of the
dynamics of f(x,u). Then, for a sufficiently small time de-
lay® L , the following estimation is obtained for the total effect

of uncertainties,
_f(x’“) =X,— gu= j(x-Lvu—L) & ]}(Z-L’u—L) = in_,_ - é.qu , (©)

where (), denotes ()(r—L).

Substituting (6) into (5) and introducing a static filter lead
to the TDO equation as the following:

z=Ez+a ~[0]x(n_l),z'u ——§~u_,_]T +Gu-K -(zl —x), )

where o denotes the constant of static filter. It is noteworthy
that TDO uses the static-filtered value of TDE.
2. Problems of TDO to be remedied

Without loss of generality, the aforementioned points to be
improved can be easily and transparently observed in a 2nd
order system. The TDO (7) for the 2"_order system is derived
as

él = ZZ_KI(ZI—x)’ (8)
z, = a-[z'z_L—§~u_L]+§-u—K2(z,—x).

Based on (11) in [9], the error dynamics can be obtained as

e = —Ke+te,

e, = e, ®
) K, (-«

&G = _Zzel - o )es F Vo>

where e, =z, —x,, e, =¢,,

Vi = ‘{%j(xﬂ)+%(f(x,u))+20(L)}, (10)
with O(L) denoting the error with the order of L due to

numerical differentiation and 'tdo' in(),, denoting the terms
related to TDO.
From the above error dynamics (9), the transfer functions

between the errors ¢,e, and f (x,u) can be derived as

s+ =2

{u(s) - _ al (1)
f(s) s3+[l;g+Kl)sz+l_aK,s+—I£2—

al al al

s+ 1—_—O!+KI 5+thl

als) _ _ oL oL , (12)
f(S) s3+(l_ﬁ+](l)sz+l—_a[{ls+£

al al aL

From (11) and (12), therefore, the characteristic equation of
the error dynamics (9) is given as follows:

ss+(1_‘£+1<1)s2+1_’_“1<1s+£=o. (13)
al al al

Since any a>1 makes at least one of the poles of (13)
outside the left-half plane, « should be selected as 0<a <1
for the stability of (13).

2.1 Reconstruction error due to low-frequency uncer-
tainty

Since the transfer functions (11) and (12) behave as low
pass filters, the reconstruction errors (¢, e, ) are mainly deter-
mined by low-pass-filtered value of the uncertainty f(x,u).
That is, given the desired observation pole 1, (dominant pole
in the error dynamics of the observer), f (x,#) in the low-
frequency range, 0<w << A,, directly affects the reconstruc-
tion error, whereas it can be well attenuated in o >> 4, .

More specifically, the errors in 0<w << A4,, can be ap-
proximated as

aft) = —-{1-a)f(x) and e t) =~ H(1-a)f(xu)-
2 n 2
In addition, if the uncertainty f(x,u)) converges to a con-

stant ( f(xu)), the steady-state errors of TDO are calcu-
lated to be

€, = —é—(l—a)f(x”,uﬂ) and e, = ——]Ii—'(l —a)fA(xﬂ,uﬂ) ,(14)
2

2

which is a finite nonzero value.
2.2 Restriction on gain selection

Suppose pole-placement at -1,-1,, and -4, is re-
quired to select gains. Comparing, term by term, the coeffi-
cients of the characteristic equation (13) with the desired error
dynamics,
S (A + A, +4,)8 + (A4, + A4, + A, 4)s + 44,4, =0,
we obtain three algebraic equations as follows:

__I;La +K, = A, + A, + 4, (15)
l-a 16
?' K = Ad+A4,4,+ 44, (16)



Transactions on Control, Automation and Systems Engineering Vol. 2, No. 3, September, 2000 151

% = AdA. (17)
From (15) and (16), in order for (1-a)/aL and K, to
have real values, the following condition should be met:

(A + 2, + 4, =4(4,4, + 4,4, + 4,4,) 2 0. (18)

Therefore, it can be easily shown that arbitrary pole-
placement is not allowed.

A close inspection of (6) and (7) reveals that the low-
frequency error problem is a direct outcome of the static filter.
While « less than unity is necessary for stability, it attenu-
ates the TDE, (z'"_L _g.u_L) , by the same ratio of «
throughout the entire frequency range, making the TDE insuf-
ficient to cancel out the f (x,u) in the low-frequency range.

As a direction to resolve the low-frequency observation
error problem, we consider a dynamic filter in place of the
static filter. Furthermore, the use of a dynamic filter also
changes the equation form of (13), the direct cause for the
pole-placement problem, thereby resolving the problem as will
be shown in Section 3.

III. Enhanced time delay observer

We propose an observer structure, called ETDO, that
adopts a dynamic filter. From its error dynamics, the stability
of ETDO is analyzed and its gain selection method is pre-
sented. Finally, it will be shown that ETDO indeed provides
the remedies to the problems.
1. Structure of enhanced time delay observer

Consider a version of TDO that adopts a first-order low
pass filter (LPF) and term it ETDO, which has the structure as
follows:

z

il

Enl+[01x(n41)’w]T +G-u-K-(5 ), (19)
W= —a~w+a[2"_L—§'u_L],

where a denotes the cut-off frequency of the LPF and w
the state associated with it. Clearly, ETDO uses the low-pass-
filtered value of TDE (z'"_L —gu L) , thereby achieving a selec-
tive attenuation of TDE only in the high-frequency range.

The error dynamics due to ETDO can be derived from (2)

and (19):

e, = A+ Yoo » (20)
where e =z -x,, e,=[e.e,e,e.] €R™, ¢, =¢,
-X, 1 0 e 0
-K, 0 1 0 -0
: . 21
Aa=l K, 0 0 1 0f:
0 0 0 - 0
—a+K)K
(i.i_"_ __K 0 o 0
1+al l+al
T d - 2al
‘Pra = Oxn’ > wo — 177, X,uj|+ O(L 5 (22)
erd [ ] V’ezdo] ¥ edo {dt(f( )) 1+al ( )}

with ‘erdo' in (), denoting the terms related to ETDO.
The derivation of error dynamics (20) is presented in the

% Note that f (x,u) consists of the system nonlinearity and the dis-
turbance. Thus, the selection of L needs to be based on the higher
bandwidth between those of f(x) and 4.

Appendix A.
From (20), one can easily derive the characteristic equation
as,
ak

ST+ K+ Ky 4K 8+ K s+ . (23)
l+al 1+al

Therefore, the gains of ETDO can be chosen from the
following procedure:

o select a sufficiently small sampling time (L) consider-
ing CPU power; and

e compare, term by term, the characteristic equation (23)
with desired error dynamics and select the gains
(K.,K,,~,K, and @) of ETDO.
2. Stability of ETDO

The Lyapunov function based stability analysis of ETDO
can be proved in Theorem 1.

Theorem 1 [Convergence of ETDO]: In the error dynam-
ics (20), if 3

o forallz>0, 3 0 < < wand0 £ ¢ < oo,

2al

<c, 24)
1+al

]g;( F)| < o)

® cvery eigenvalue of A, has a negative real part, be it
real or complex,
then the error is exponentially convergent to an open domain,

B(s)= {eo,: e, ]l < 5}, (25)
A4(P) A,(P) .
h = if = ( th
where §=2 7 (Q) (1ol = 2 7.Q) (e, +¢) Wi

AlP+PA,=-Q; and i,() denoting the maximum eigen-
valueand A (-) the minimum one.

Proof: Defining a Lyapunov function as ¥ =e’Pe
can easily obtain ¥V as follows:

one

ol ?

14

T T
—e,Qe, +2e,PY,,,

= 4,(Q) el +24.,(P) I

In

[ €

ol etdo ol|[*

Hence, for any |e,| that satisfies

A4 (P)

=2 (c+¢)=34,

2.(Q)

¥ remains negative. Therefore, the reconstruction error is
exponentially convergent to an open domain,

3(5) = {em:
3. Improvement through ETDO

For the sake of transparent comparison with TDO, 2"order
system is considered again, for which ETDO can be derived as

WPy

A )II
>2 AM(Q) I *etdo

€0

<s}.

€0

5 =z _Kl(zl —x),
z, = wt+g-u—Ky(z-x), (26)
W o= —a-w+a-[z'2_L—§-u,L].

From (20), the error dynamics of ETDO can be expressed as

® These assumptions are also used in the stability proof of TDO
(Chang et al., 1997).
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e = —-Ke+e,
6 = e, 27
. (~a+K)K, K,
e, = e — e+ 5
? 1val 0 Arap 2 Ve

and thus the transfer functions between ¢,e,and f(x,u) can
be derived as

e(s) B s ’ (28)

f(s) S+Ks+ L Kys+—2 K,
I+al 1+al

ez(s) __ s +Ks . 29)

f(s) S +Kst+ I Ks+ a K,
l+al 1+al

3.1 Reconstruction accuracy for low-frequency uncer-
tainty

(28) and (29) show that the reconstruction errors are af-
fected by the band-pass-filtered value of f(x,u). Given 2,
the effect of f(x,u) can be well attenuated for both
O<w<<l,and w>>41,. In addition, the steady-state errors
of ETDO become zero for f (x,u) that converges to a con-
stant. ETDO provides a remedy for the low-frequency error
problem associated with TDO. Clearly, the remedy comes
from the use of the LPF, which attenuates the TDE only in the
high-frequency region.
3.2 Free from restriction on gain selection

In ETDO, owing to the different form of its characteristic
equation, an arbitrary pole-placement is now possible for the
desired error dynamics. More specifically, from (28) and (29),
the characteristic equation of the error dynamics of ETDO is
given as follows:

S +Ks+ K,s+ K, =0. (30)

1+al l+al

Compare term by term the coefficients of the characteristic
equation (30) with the error dynamics having arbitrary desired
poles (-4,,-4,, and -4,). Then one can obtain three alge-
braic equations,

K = A +A,+4,, (31)

1
K = A+ A A+ A, (32)
a 33
Tk s AAyAsy. (33)

Given L and the desired poles -1,-4,, and -A,,(31),
(32), and (33) enable to select the gains (K|, X,,and a) of
ETDO without any restriction.

IV. Performance comparison
For performance comparison, TDO and ETDO for 2™-order
system are considered again. By performance we mean paper
the reconstruction accuracy and noise rejection ability. If the
output y is corrupted by measurement noise v, from (9)
and (27), the error dynamics of TDO is obtained as

é =-Ke +e,+Kp,

6=, (34)
. K, l-a K,
T A
and that of ETDO as
e =-~Ke +e,+Kuv,
& =e,,
("a +K|)K2 K, (3%)
3 = ' €
1+al 1+al
. (ma+K)K,
S U_( 2 l) 2U+Weldo’
1+al 1+al

We are going to compare them in terms of their transfer
functions first, and then by simulation. ’
1. Comparison by transfer function

As a significant indication of the performance, the fre-
quency responses of reconstruction accuracy and noise sensi-
tivity can be obtained to evaluate. From (34) and (35), the
transfer functions of TDO by Laplace transform are derived as

l-a

S+— .

L P Py A ©)
2

s +( +Kl)s + K‘s+aL (36)
K,s2+1__aKls+%

+ u(s),
53+(1_a+K,]52+1 aKls k
al

1—
s +?aKls+— 37

1 kse 2k
l+al 1+al (38)

S+ Ks A

S+ Ks+ LKZS +—2 K,
1+al 1+al (39)

——K,s +LK2s
l+al 1+al u(s).

s+ Ks +—1——-KZS+LK2
l+al 1+al

+

In (36)~(39), the first term denotes reconstruction accuracy
and the second term noise sensitivity.

Useful insights can be obtained by the following two sim-
plifications: First, the frequency range of system uncertainty
f(x,u) may be assumed to be bounded as

for w>w,, F? (w)=0, (40)

where F}(w) denotes the Fourier transform of £ (x,4) and
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o, the bandwidth of plant dynamics including disturbance.
Noting in (4) that f(x,u) is a function of x, u,and d, one
finds the assumption above reasonable. Since the observer
dynamics is made much faster than the plant dynamics, we can
select the desired observation poles (4,) as

A >0, 00 A,=10-0,. 41

Secondly, the measurement noise, v, is considered as a white
noise this is,

for all , F;(w) %0, (42)

where F? (®) denotes the Fourier transform of v . Note that
the noise due to encoder resolution in Section 5 is regarded as
a white noise.

For the comparison of transfer functions, we first specify
the desired poles for each observer to determine its gains, and
then obtain the magnitude plots for comparison. For TDO,
poles are specified so that they may meet (18).

Fig. 1 shows the magnitude plots of the transfer functions -
- the ratios of |¢| and |e,| to lfi and |u -- for the poles
of -4,,—4,,-4-4, with 2,=30rad/s . In terms of recon-
struction accuracy shown in Fig. 1(a) and Fig. 1(b), ETDO has
the better performance in w<w, ~4,/10; yet, in terms of
noise sensitivity, Fig. 1(c) and Fig. 1(d) show that TDO is the
better, especially in the high-frequency region.

In order to make the comparison more significant, we at-
tempt to take both the accuracy and noise sensitivity together
into account. To this end, we first equalize the noise sensitivi-
ties of the two observers and compare their accuracies. Their
noise sensitivities become approximately similar, when the
poles of TDO are set to -251,,-254,,-4-254, with
A,=30rad /s, and those of ETDO to -4,,—4,,~4, with
A, =30rad /5. Fig. 2 also shows the magnitude plots of the
transfer functions. From these plots, although ETDO has the
similar noise sensitivity with TDO in Fig. 2(c) and Fig. 2(d),
ETDO has better reconstruction accuracy in w<w, ~4,/10
than TDO in Fig. 2(a) and Fig. 2(b).

2. Comparison by simulation

To validate the comparison results above, the two observers

are applied to the following 2"_order nonlinear system,
¥ o= —x-x+u, 43)
y = x+uv,

where x denotes a nonlinear spring constant of x=10 and
v a white measurement noise with standard deviation 0.001,
and the control input (u) is selected as a sinusoidal input
(u=sin(0.6m)) . Recall that TDO (8) and ETDO (26) for 2md.
order system were already derived in Section 2.2 and Section
3.3, respectively.

Note that the time delay for the observers is selected as the
same value of the sampling time ( L ), 0.001sec’ and & is set
to 0. The observers are tested for the different desired poles
which is expected to show the similar noise sensitivity of TDO
and ETDO. That is, the desired poles of TDO are chosen as
-254,,-254,,~4-254, with A,=30rad/s , and those of
ETDOto —4,,—A,,- 4, With A, =30rad /s.

The simulation results are shown in Fig. 3 and Fig. 4. In all

the figures, both (a) and (b) show the states (dotted line) to-
gether with the reconstructed states (solid line); both (c) and
(d) the reconstruction errors, on which our observation is fo-
cused. Clearly, ETDO outperforms TDO in terms of accuracy
and noise sensitivity, if marginal for the latter. More specifi-
cally, the reconstruction errors of TDO are |el|<0.0025 and
|e.] <03 ; whereas those of ETDO |g|<0.0015and |e,|<01
(about 60% and 33% of the errors in TDO, respectively).

V. Experiment
1. Experimental setup

To validate the analysis of TDO and ETDO in a real system,
the two observers are applied to a BLDC motor system. The
experimental setup of which is shown in Fig. S. Note that the
spring connecting the tip of the link to a wall behaves as a
nonlinear spring due to its geometric configuration.

For the experiments, a DSP board is used and a sampling
time ( L ) for observers is selected as 0.001s. The angular dis-
placement of the BLDC motor is measured with a rotary en-
coder of 8000 pulses/rev and the measurement noise due to the
resolution is regarded as a white noise. Since we are con-
cerned with the accuracy of state reconstruction, open-loop
tests are conducted for which a step input (u =0.8 volt) is se-
lected.

To provide the reference velocity for the comparison of ac-
curacy, we obtained it by using a sophisticated off-line nu-
merical differentiation scheme: FIR (finite impulse response)-
filter in MATLAB and central numerical differentiation.

2. Observers design

The BLDC motor system for the experiments can be re-
garded as a 2™-order nonlinear system described in (1), with
its state vector being defined as x=[xl,x2]r =[6, {9]7. In the
design of 2™-order TDO (8) and ETDO (26), the time delay
for the observers is selected as the sampling time ( L ), 0.001s
and g is set to 0. The gains ( X,K,,a) for TDO and
(K,,K,,a) for ETDO are selected for the following poles: for
TDO, -254,,-254,,-4:254, , (with A, =30rad/s ); for
ETDO, -i,,-4,,- 4, ,(with 1,=30rad /s ).

3. Observation results

Fig. 6 and Fig. 7 show the experimental results of TDO and
ETDO, respectively. In these figures, both (a) and (b) show the
states (dotted line) together with the reconstructed states (solid
line); both (c) and (d) the reconstruction errors, which are
plotted again in different scales in Fig. 8 for a close inspection.

The results show that ETDO generally outperforms TDO in
terms of both accuracy and noise sensitivity. Fig. 8 reveals
that the major portion of the error of TDO is accounted for by
a low-frequency component apparently caused by its static
filter. At the same time, the error of ETDO in Fig. 8 portrays
how the LPF in ETDO is reducing the low-frequency error
due to TDO, thereby demonstrating its effectiveness. To sum-
marize, the experimental results confirm the analysis results of
TDO and ETDO.

VI. Conclusion
In this paper, we have analyzed TDO and have reported its
problems as follows:
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e TDO displays large reconstruction errors due to low-
frequency uncertainty; and

e TDO has some restrictions on selecting its gains: arbitrary
pole-placement is not possible.

To remedy these problems, we have proposed ETDO using
a LPF instead of the static filter in TDO. In addition, the error
dynamics of ETDO and the procedure of gain selection have
been presented. As a result, ETDO has smaller reconstruction
errors than TDO and no restriction on gain selection. Through
the performance comparisons and the experiments of BLDC
motor system, we could verify the analysis results of TDO and
ETDO. Consequently, ETDO has been shown to not only rem-
edy the problems of TDO, but also preserve the positive at-
tributes of TDO.
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100 0nd ' M 10’ 10° !
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(c)leti /i

) 1 2 3

1 10 1
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Fig. 1. Magnitude plot of TDO (thin line) and ETDO (solid
line) -- the ratios of |g| and || to m and |o] -

0’

with the same desired poles (-4,, —4,, —4-1, with
A, =30rad/s).
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Fig. 2. Magnitude plot of TDO (thin line and ETDO (solid

* When L is set less than 0.001 s, the reconstruction errors tend to
decrease, yet the improvement is not noticeable; when L becomes
larger than 0.001 s, the errors increase. However, excessive large
L makes the observer unstable.

line) -- the ratios of |¢| and || to | f' and |o]--
with the different desired poles (TDO : -254,,
-252,, -4-254, and ETDO: -4, -4, -4,
with 4, =30rad/s).
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Fig. 3. Simulation results of TDO: Both (a) and (b) show the
states (dotted line) together with the reconstructed
states (solid line); both (c) and (d) the reconstruction
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Fig. 4. Simulation results of ETDO: Both (a) and (b) show the
states (dotted line) together with the reconstructed
states (solid line); both (¢) and (d) the reconstruction
errors.



Transactions on Control, Automation and Systems Engineering Vol. 2, No. 3, September, 2000 155

lu, lv, Iw

MOTOR
DRIVER

10

— DspP
— BOARD

PC

Fig. 5. Experimental setup: BLDC motor system with the
spring connecting the tip of the link to a wall.
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Fig. 6. Experimental results of TDO: Both (a) and (b) show
the states (dotted line) together with the reconstructed
states (solid line); both (c) and (d) the reconstruction
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Fig. 7. Experimental results of ETDO: Both (a) and (b) show
the states (dotted line) together with the reconstructed
states (solid line); both (c) and (d) the reconstruction
€ITOrS.
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Fig. 8. Reconstruction error of TDO and ETDO: Both (a) and
(b) show the reconstruction errors of TO (dotted line)
and ETDO (solid line).
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Appendix
A. Derivation of error dynamics in ETDO
Except the last two equations in the error dynamics (20), the
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remaining error dynamics can be straightforwards derived
from (2) and (19). Then, in this appendix, the last two equa-
tions in (20) are derived.

From (2) and (19), the error dynamics of (e,) can be de-
rived as

6 =-Ke+w-f. (44)

Defining e,, =¢,, its derivative becomes

€y = _Knél +w— %(f)a (45)

where ¢, from the first equation in (20), can be rewritten as
6=-Ke +e,. (46)

Besides, the derivative of w in (19) can be expressed as
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W= —a-w+a-[z,,_L —g«u_L],

z,, =X, +X, —g-u,L],

(47

= —a-wt+a-

where e =z —x and

f=x-gu of(6).
Combining (44), (46) and (47) with (45),

b =K (Kere)-a (s +Ke+f)rals, ] ’%(f )

fo=%,-8u, from

(oK) K -Ke-a - J-o 7))
=(-a+K)-Ke-Ke, _aL'(éml +qL))_aL(§(j)+qL))—%(i)

Finally, from the above equation, the derivative of ¢, results
as follows:

(-a+K)K, K d(s 2dl
. v K, A (F\_28L oy (48
“ T lral” dt(f) a0 8

e
"“ 1+al
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