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- Observer Design for A Class of UncertainState-Delayed
Nonlinear Systems

Junwei Lu, Chunmei Feng, Shengyuan Xu*, and Yuming Chu

Abstract: This paper deals with the observer design problem for a class of state-delayed
nonlinear systems with or without time-varying norm-bounded parameter uncertainty. The
nonlinearities under consideration are assumed to satisfy the global Lipschitz conditions and
appear in both the state and measured output equations. The problem we address is the design of
a nonlinear observer such that the resulting error system is globally asymptotically stable. For the
case when there is no parameter uncertainty, a sufficient condition for the solvability of this
problem is derived in terms of linear matrix inequalities and the explicit formula of a desired
observer is given. Based on this, the robust observer design problem for the case when parameter
uncertainties appear is considered and the solvability condition is also given. Both of the
solvability conditions obtained in this paper are delay-dependent. A numerical example is
provided to demonstrate the applicability of the proposed approach.

Keywords: Linear matrix inequality, nonlinear systems, robust observer, time-delay systems,

uncertain systems.

1. INTRODUCTION

In dealing with the problem of observer design,
various approaches, such as transfer-function,
geometric, algebraic, singular value decomposition
and so on, have been successfully proposed and many
results on the observer design for linear systems have
been reported in the literature [1-3]. When parameter
uncertainty appears in a system model, the stability of
the resulting error system cannot be guaranteed by the
classical observer theory. This has motivated the study
of robust observer design. In [4], the problem of
robust observer design for uncertain systems with
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norm-bounded parameter uncertainties was considered
and some robust results for both control and
estimation were presented. By using the factorization
approach, a similar problem was addressed in [5],
while [6] studied the problem of robust Kalman
filtering design for uncertain linear systems by using a
Riccati equation approach.

It is known that time delay arises quite naturally in
propagation phenomena, population dynamics or
engineering systems such as chemical processes, long
transmission lines in pneumatic systems, and so on.
Many results related to delay systems have been
reported in the literature [7-11]. For observer design
for time-delay systems, the work in [12] proposed a
general form of linear observers by using the
factorization approach, in which a necessary and
sufficient condition for the existence of state
functional observers for such systems was obtained.
For discrete delay systems, a memoryless state
observer was designed by the state augmentation
approach in [13]. It is worth noting that in both [13]
and [12], parameter uncertainties in the system
matrices have not been considered.

On the other hand, it is known that one of the most
popular ways to deal with the observer design
problem for nonlinear systems is the one based on
differential geometric approach [14]. It turns out that
the observer problem for nonlinear systems is much
more difficult than the controller problem [14,15].
Recently, the observer design problem for a class of
nonlinear systems was addressed in [16-18], and an
algebraic Riccati equation approach was developed.
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Very recently, the observer problem for a class of
uncertain nonlinear systems with state delay was
considered in [19], however, the observer structure
proposed in [19] involves parameter uncertainties,
which makes the design of such observers difficult in
practical applications.

In this paper, we consider the problem of observer
design for a class of state-delayed nonlinear systems
with, or without, parameter uncertainty. The class of
systems under consideration is described by a linear
delayed state space model with the addition of known
nonlinearities which depend on state as well as
delayed state and satisfy the global Lipschitz
conditions. The nonlinearities appear in both the state
and measured output equations. The parameter
uncertainties are assumed to be time-varying and
unknown, but are norm-bounded. We first consider
the nonlinear observer design for the above class of
nonlinear systems without parameter uncertainty. A
linear matrix inequality (LMI) design approach is
developed. Then the problem of robust observer
design for the above class of nonlinear systems with
parameter uncertainty is investigated. The problem to
be addressed is the design of a nonlinear observer
such that the error system remains globally
asymptotically stable for all admissible uncertainties
and addressed nonlinearities. A sufficient condition
for the solvability of this problem is proposed in terms
of LMIs. Furthermore, an explicit formula of a desired
robust observer is given. Both of the solvability
conditions proposed in this paper are delay-dependent,
which will be less conservative than delay-
independent ones.

Notation: Throughout this paper, for real symmetric
matrices X and Y, the notation X > Y (respectively, X
>Y) means that the matrix X-Y is positive semi-
definite (respectively, positive definite). / is the
identity matrix with appropriate dimension. The
notation M’ represents the transpose of the matrix M.
{|x|| stands for the Euclidean norm of the vector x.
Matrices, if not explicitly stated, are assumed to have
compatible dimensions.

2. PROBLEM FORMULATION

Consider the following class of uncertain

nonlineartime-delay systems:

() x(1) =(4 + AA(1)) x(1)

+ (dg+ Ada(1)) x(1-7) ()
+ Ggx(1), x(1-1)),

(1) = (C+ AC(D) x(1)
+ (Cqt ACD)) x(1-17) 2)
+ Hh(x(f), x(t-1)),

X(t) = (ﬂ(f), tE[—'T,O], (3)

where x(f)eR" is the system state, y(f)e R" is the

measurement, g(-, -): R™R"” — R"¢ and h(-, -): R™<R”
— R" are known nonlinear functions, 4, 44, C, Cas G

_and H are known real constant matrices, ¢(f) is a real-

valued continuous initial function on [-, 0], >0 is a
known time delay of the system, AA(¢), AAAr), AC(¥)
and ACLf) are unknown matrices representing time-
varying parameter uncertainties, which are assumed to
be of the form

AA(r)  Ady(r) | _| M,
= F(O[Nt N2, 4)
AC(t) AC (1) M,
where M,, M>, Ni, and N, are known real constant
matrices and F(-) : R — R*’ is unknown real-valued
time-varying matrix satisfying

FO'FO<I, YVt (5)

The parameter uncertainties AA(?), A4 (?), AC(f) and
ACLY) are said to be admissible if both (4) and (5)
hold.
Throughout the paper, we make the following
assumption on the nonlinear functions in system ().
Assumption 1:

i) g(0,0)=0;

ii) ||g(x1, x2) = g1, YISt =yl + ]Sz
(2 =y h(xy, x2) = Ay, v UL S1aley —
YOIl + | S2n(x2 = y2) Il

for all xi, x2, y1, y2e R”, where Syq, S, S1; and Sy are
known real constant matrices.

The problem we address in this paper is the design
of a state observer such that the error system is
globally asymptotically stable. More specifically, we
address the following observer design problems:

(a) Nominal observer design problem: For the
nominal system of (¥), i.e., setting AA() =0, Adff) =
0, AC(r) = 0, and ACL¢) = 0, we are concerned with
obtaining an estimate x(r) of the state x(¢) by using
the measurement such that the error system is globally
asymptotically stable for all the nonlinearities
satisfying Assumption 1.

(b) Robust observer design problem: For the
uncertain nonlinear system (X), we are concerned with
obtaining an estimate x(z) of the state x(¢) by using

the measurement such that the error system remains
globally asymptotically stable for all admissible
uncertainties satisfying (4) and (5) and the
nonlinearities satisfying Assumption 1.

3. MAIN RESULTS

In this section, an LMI approach is proposed to
solve both the nominal and robust observe design
problems formulated in the previous section and
delay-dependent solvability conditions will be
developed. Before presenting the main results, we
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give the following lemma which will be used in the
proof of our main results.

Lemma 1 [20]: Let 4, D, E, F and P be real
matrices of appropriate dimensions with P > 0 and F
satisfying F’ TF < I. Then we have:

1) For any scalar £ > 0,

DFE + (DFE) <& 'DD" +¢E'E

2) AD +(4D)" < AP4"+ D'P'D.

The following theorem provides a solution to the
nominal observer design problem for system ().

Theorem 1: Consider the system (X) with A4(r) =0,
AA()=0, AC(H)=0, and ACLr)= 0 under Assumption
1. If there exist a scalar ¢ > 0, matrices P > 0, 0 > 0,
W=>0,X>0, Y and Z such that the following L.MIs
hold:

I ¥ PA, -ZCy—Y
AAp-clzt -y" 2es8ls,-0
G'p 0
-H" 7T 0
| tPA-7ZC T P4, -7 ZC,
PG -ZH tA'P-7CTZT]
0 0 cdAlp-c4lZ"
€I 0 tG'p <0,(6)
0 -el -t HTZT
tPG tZH tW-2cP
X v )
L/T W} >0, (7)
where
Y=p4+A4P+0Q-zC-CZ"
+IX+ Y+ Y +2eS] S, (8)
sl ool
Sth S

then the nominal observer design problem is solvable.
Furthermore, when (6) and (7) are feasible, a suitable
nonlinear observer is given as follows:

R=AR() +Aaz(r—7)+ Gg(X(D), *(t-1))
+ Lo (1) — Cx(t) — Cai(t-7) (10)
— Hh(3(1), #(-7))],

where
L,=P'Z (11)
Proof: Let
e(®) =x() —x(1) . (12)

Then from the system (X) and the observer (10), it is
easy to show that

&)= (A4 — L,O)e() + (Aa — LoCo)e(r—7)
+G Ex(), x(t-1), (), *(-71)),  (13)
where
G =[G -L.H], (14)

and

Sx(0), x(1=t), X(1), X(t—7))

_[ g(x(0), x(¢ = 7)) - g(G(1), %(r - 7)) (15)
h(x(f), x(t — 7)) - h(G(@), 2t 1)) |
By Assumption 1, we have
IEGx(2), x(t—1), 2(t), *(—7))IF
<2||S,e(dI” + 2|S2e(t-7)1. (16)

To show the asymptotic stability of (13), we define
the following Lyapunov functional candidate:

V (s 1) = e(t) Pe(t) + J.tt_re(s)T Oe(s)ds
+ _°T [! &) wels)dsda,

where

e=e(t+p),pe [27,0]

Then, the time-derivative of V (e, #) along the solution
of (13) is given by

V(e t)=2e(®)"P [(4 - L,C) e(f)
+ (Ag— L,C) e(t—7)
+ G &x(D), x(t-1), (), x(t-1)) (17)
+ e(1) Qe(t) — e(t=1) Qe(t—1)
+re(t) Wer)
- | :_1 é(s) Wels) ds.
Let
a(a) = e(?t), bla)y =é(a) , N=0.
Then, by (7) and Lemma 1 in [21], we have

-2 Lt_r a(a)’ N b(a)da
< te(t) Xe(®) + e(t)" (Y + Y ) e(r)
— 2e(t)'Ye(t—0) + | t’_r e(s)] Wweéls)ds.

This together with (17) gives

V(1) < 2e(§) PI(4 — L,C) e(t)
+ (44— L,Cy) e(t—7)
+ G &x(0), x(--1), %(t), X(t—71))
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+e()T (O + X+ Y+ Y)e(r)
— 2e(t) Ye(t—1) — e(t-1)" Qe(t-7)
+re() Wer). (18)
Then, it follows from (16) and (18) that
V(e, 1)< 2e()"P[(A — L,C) e(t)
+ (Aa — Lo,Ca) e(t—7)
+ G &x(1), x(t—1), (), E(t-71))
+e()T (Q+ X+ Y+ Y )e(r)
— 2e(t) Ye(t—1) — e(t—1) Qe(t—7)
+ () Wer)
— eE(x(t), x(t--1), (), t-7))"
&(x(1), x(t-1), X(1), X(t-71))
rsT
+ 2¢[e(t) Tl Sie(r)
+ e(t-1)52 Sye(t-1)].
That is
V(1)< ot @), (19)

where
Q= | P(4-L,CYHAL,C) PO+ X+Y+YT +2€ ST S,
(4, -L,C) P-YT
G'p
P(4;-L,C;)~Y PG
26 578, -0 0

0 -1
(4-L,C) (4-1,0)
+1| (Ag ~L,C)T | W] (4g-L,CH" | . (20)
GT GT

o0 =[e(®" e(t—0) Ex(O)x(t-0), x(t), % -7))T. Q1)

Now, by (6) it is easy to see that there exists a scalar a
> 0 such that

I PA;—2C,-Y
ATP—crzT —yT  2e81s,-0
G'p 0
-HTZT 0
| tPA-7ZC  tPA;-1ZC,
PG -zH vATP—7CTZT ]
0 0 cAP-r4lz"
€1 0 tGTP <0.(22)
0 -€l —tH"ZT
Tt PG tZH TW-2cP |

Noting W >0 and using Lemma 1, we have
W-2pP>-PW'P. (23)
This together with (22) gives

¥ +al PA;—ZCy—Y
ATp-cizT —-yT  2e81s,-0
G'p 0
-HTZT 0
| TPA-7ZC T PA; ~1 ZCy
PG -ZH tATP-7zCTZ"]
0 0 A P—cATZ"
€1 0 tG'P <0.(24)
0 -€l —tHTZT
tPG tZH  -tPW'P |

Considering (11) and Schur complement, it follows
from (24) that

al 0
o+ 0 0 0] <0, (25)
0

where @ is given in (20). From (19) and (25), it is
easy to see that

V(e,t)<—alle(d|I*. (26)

By the stability theory in [10], it follows from (26) that
(13) is asymptotically stable. This completes the proof.

The following theorem presents a result on the
robust observer design for uncertain nonlinear system
).

Theorem 2: Consider the wuncertain nonlinear
system () satisfying the Assumption 1. If there exist
scalars ¢; > 0, &; > 0, matrices P, >0, P, >0, 0 >0, W
>0, X > 0, Y and Z such that the following I.MIs hold:

= U -Y+eNIN,
Ul —vT +e NN, 26,578, +NIN,-0Q
ul 0
T A T U
L T U3T 0
u, AT U
0 Ul 0
-1 U 0 |<0,27)
tUy tW-=-2tP 0
0 0 —€/ |
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X Y
[YT W}E 0, 28)

where P = diag(P,, P,), and

E=A+AT+Q+rx+Y+YT

+81 NIT N] +282A§{ 51’ (29)
B4 0
A= , (30)
0 RA-ZC
P4 0
U= ' , (31)
| 0 R4, -ZC,
'RG 0 0
U, = , (32)
| 0 PG -ZH
[ BRM,
U3= » (33)
| M, -ZM,
N=[N0], N,=[N:0], (34)
- S 0 - S 0
S="% |, 5= |, (35)
0 S 0 S,

and S and $; are given in (9), then the robust observer
design problem is solvable. Furthermore, when (27)
and (28) are feasible, a suitable nonlinear observer is
given as follows:

S=AX() + A 3t -1)+ Gg(%(), x(t-7))
+L(6) ~ CX(t) — Cuki(t-7) (36)
- Hh(x(t), %(r-1))],

L= PF'z (37)
Proof: Define

X()y=x()—x() .
Then from (1)-(3) and (36), we obtain

= - LOX)+ (g~ L,CHF1~1)

+ [(A4(r) = LAC(D]x(1) (38)
+ [(A4u(t) — LACLD)]x(1-7)

+ G &), x(t-1), (), t-71)),
where G and &x(f), x(t—7), (),

defined in (14) and (15), respectively.
Considering (1)-(3) and (38), we have

()= (Ac + AN+ (Aea + Adea(D))n(t—1)
+ Gle(x(1), x(t-1), X(1), *(t-7)), (39)

X(t—71)) are

where

n7 = L™

4 0
A4.= ,
[0 A—ch}

AA(D) 0
AA(t) - LACE) 0O

Ay 0
Acd = >
0 A,-LC,

o]

{ A4, (t) 0}
AAcd = s
AA;()—-LAC,(f) O
{G 0}
G.= — 1,
0 G
and

gc(x(t)a X(f_T), )%(t) s )’(\f(f - T) )
= [ g, x(t—1)) Ex(0), x(t0), *(t), %t -7))" 1"

By Assumption 1, it is easy to show that
IE0x(0), x(t—0), %), *(—7))I
<201 S 71 + 21| S, n(t=0)II, (40)

Now we define the following Lyapunov functional
candidate for (39):

Vor 0= 0P [ n(s)" On(s)ds
* I i L: " n(s)" Wi(s)dsde.

Then, the time-derivative of V(#,, ) along the solution
of (39) is given by

V(,0)=2n(t) Pl(4c + A4 ())n(t)
+ (Aeqg + AAcad(D)n(t—1)
+ Gololx(t), x(t-1), (1), #(t-71))]
+7(t)" On(t) = n(t—1)"On(t-1)
ven@) Wi~ [ a)" wis) ds.

By (7) and Lemma 1 in [21], we have

V(n,,8) < 20() P[(Ac + AAL))n (D)
+ (Aca + Adoa(D)n(1-7)
+ G.E(x(t), x(t-1), #(t), %(t-17)) (41)
+9(0)(Q + X+ Y+ Yn(n)
= 2n(8) Yn(t=1) = n(t—7)" Qn(t-7)
+ i) W),

Note that
[A4Ar) AoD)] = MFOI N, N, ],

where N; and N, are given in (34), and

N M,
M= o |
1 7 Ly VL)
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Then, by Lemma 1, it can be seen that
20O PIAA(Dn(2) + A oa(tyn(t—7)]
= 21(t)"P M, F()[ Nyn(H)+ Ny n(1-1)]
< & 'n(t)'P M, M| Py(r) (42)
+ e[ Nyn(t) + Nyn(—o)1"
[Nin(t) + Nyn(t-)].

It follows from (40), (41), and (42) that

V(1)< 2n()"P[(An(t) + Acan(t-1)
+ Gololx(D), x(1-1), (), x(t-7))]
+ (1) (0 + X + ¥ + Yn(1)
= 2n() Yn(t=1) = n(t=v)" Qn(t-1)
+ o) Wt
+ ' n(0)"P My M Pn(1)
+ e[ Nyn(r) + Nyn(t—o)1"
[ Nin() + Nyn(t=7)]
— &28.(x(1), x(t-1), R(O),%(t-1))
Ee(x(n), x(1-1), 30, 5(1-7))
+ Zez[n(t)ff[S‘ n(1)
+ (=052 S (-1
= 0" TH(r),

where

o) = [n(O" n(t—0)" £ x(t—1), 3@, (t-7))T,

and

C} PA,-Y PG,
r=|4Lp-yT 265818,-0 0
GI'p 0 6,1
A (4] [A[sT
v Al WAl | +e| NT||RT
Gl'| |af 01l o

O@=PAA+A P+O+X+V+ Y
+26, 57 §,+ €' PM, M| P.

Then, by using (27), (28) and following a similar line
as in the proof of Theorem 1, we can deduce that there
exists a scalar b > 0 such that

V(. 0)<~blln(®).

Therefore, we have that (39) is asymptotically stable
for all admissible uncertainties satisfying (4) and (5)
and nonlinearities satisfying the Assumption 1. This
completes the proof.

Remark 1: Theorems 1 and 2 provide a method for
designing nominal and robust observers for system (),

respectively, and the desired observer can be
constructed by solving certain LMIs. The LMI

. conditions in Theorems 1 and 2 are delay-dependent,

which will be less conservative than delay-
independent ones. It is also worth pointing out that the
proposed LMIs can be solved efficiently, and no
tuning of parameters is required [22] although there
are several parameters to be determined.

In the case when there are not nonlinearities in
system (X), that is, the system (X) reduces to the
following uncertain time-delay system:

&) 1) = (A + MO + (da+ AL)x(1—7) (43)
(@) = (C+ ACH)X(E) + (Ca+ ACAD))x(t-1)(44)
x(n) =), Vte [-1,0], (45)

where AA(f), AAAt) and AC(¢) are unknown matrices
satisfying (4) and (5). Then, from Theorem 2, we have
the following robust observer design result for the
above system.

Corollary 1: Consider the uncertain linear system
(X)) satisfying the Assumption 1. If there exist a scalar
£ > 0, matrices Py >0, P,>0,0>0,W>0,X>0,Y
and Z such that the following L.MIs hold:

[1)

UI—Y+€1N1TN2 TAT U3

Ul -Y" +eNIN, NIN,-0 c Uf 0
TA T U tW-2tP 0
ul 0 0 —€1

<0, (46)
X v
L,T W}Z 0, (47)

where P = diag(P,, P,) , and
E=A+A+ O+ X+Y+Y +a N W,

and A, U; and U; are given in (30), (31), and (33),
respectively, then the robust observer design problem
is solvable. In this case, a desired robust observer for
system (Z,) is given as follows:

R=AR(t) +Aa5(t — 7) +LAO~C () ~Cui(t - r) 1,(48)
where
L= P'Z

In the case when there are not nonlinearities,
neither delays nor parameter uncertainties in system
(%), it can be found that the designed observer reduces
to the usual observer of Luenberger type.

4. NUMERICAL EXAMPLE

In this section, we shall give a numerical example
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to demonstrate the effectiveness of the proposed
method.

Consider a simplified mathematical model of the
Mach number dynamic response to guide vane angle
changes with »(#) = 0, which can be described by [23]:

X, (1) = —ax; + kaxy(+-7), (49)
X, (1) = x3(), (50)
%3(0) = —w’x, — 2Lwnxs. (51)

As in [23], we choose

1

a= s
1.964
7=0.33s,

k=-0.0117deg ™",

w=6.0rad/s, (=0.8.

In this example, we suppose the measurement y(¢) is

@ =1+ 0.1A0)]x1(r) — 0.5x2(r) + 0.8x3(¢)
+ [0.1/T) — 0.2]x2(7—7) + 0.3x5(t—7)  (52)
+ 0.25in[0.2x5(f) + 0.3x,(r-1)],

where f{f) is unknown but satisfies | f{f)] < 1. Then it is
easy to see that the system in (49)~(52) satisfies
Assumption 1 and has the form in (1) and (2).

To design a robust observer for system (49)-(52),
we use Matlab LMI Control Toolbox to solve the
LMlIs in (27) and (28), and obtain the solution as
follows:

[10.8219 0.1017 0.0139
Pi=| 0.1017 6.6886 0.7544 ],

| 0.0139  0.7544 0.1945
[10.3391 0.0762 —0.0524
P,=| 0.0762 8.7695 0.7945 |,
| -0.0524 0.7945 0.1879

[4.8566 0.0818 0.0005]]
0.0818 5.1571 0.2987 ],
0.0005 0.2987 0.2566 |

(5.5738 0.0536 0.0024]
0.0536 4.7562 0.2057 |/,
|0.0024 0.2057 0.3562

O=diag

5.5088 —0.0362 -0.0049
W=diag| | -0.0362 1.6347 0.1376 |,
-0.0049 0.1376  0.0307
53098 0.0236 -0.0109
0.0236 3.3328 0.1879 ||,
-0.0109 0.1879 0.0294
53139  —0.1463 0.0055
X=diag| | -0.1463  4.9421 0.3263 |,
0.0055  0.3263 0.4507

52965 0.0389 -0.0075
0.0389 5.1752  0.4145 ||,
-0.0075 0.4145 0.5727
—0.8929 03876  0.0246
Y=diag| | -0.0091 -0.5879 -0.0439|,
0.0057 —-0.0694 —-0.0459
—0.7055 0.0088  0.0030
0.0536 -0.5977 -0.0741 ||,
0.0073  0.0048 -0.0484
-0.4419
Z=|-4.1967 |, & =4.8440, &,=5.7527.
—0.3408

Therefore, by Theorem 2 we have that a desired
nonlinear observer can be chosen as in (36) with

-0.0374
L,=|-0.5073].
0.3207

5. CONCLUSIONS

In this paper, we have studied the problem of
observer design for a class of state-delayed nonlinear
systems with time-varying norm-bounded parameter
uncertainties. For both cases with and without
parameter uncertainties, the solvability conditions of
the problem have been presented and an LMI design
approach has been developed. Both of the solvability
conditions are delay-dependent. A numerical example
has shown the effectiveness of the proposed approach.
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