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A Robust Observer Design for Nonlinear MIMO
Plants using Time-Delayed Signals

Jeong Wan Lee and Pyung Hun Chang

Abstract : In this paper, a robust observer design method for nonlinear roulti input multi-output (MIMO) plants
is presented. This method enables the extension of the time delay observer (TDO) for nonlinear SISO plants in
the phase variable form to MIMO plants. The designed TDO reconstructs the states of the plant expressed in the
generalized observability canonical form (GOBCF), yet requiring neither the transformation of a plant, nor the real
time computation of system nonlinearity. Consequently, when the TDO is used for several control schemes based
on the transformed coordinates, the observer lurmed out to be computationally cfficient and easy to design for
nonlinear MIMO plants. In a simulation of a two-link manipulator with flexible joinls, the control performarnces
using TDO appeared to be similar to those using actual states and superior to those using numerical
dilferentiation. Finally, in an experiment with a robot, it was confirmed that the TDO reconstructs the states

reliably and TDO can be effectively used in a real closed-loop system.

Keywords : nonlinear observer time-delay control, coordinates transform, robust obscrver

1. Introduction

The design of a state observer is important in the
control of nonlinear plants. In the literature, several
observer structures based on different methods have
been described: global linearization méthods by coor
dinate transformation of state variables and the output
injection [1]-[4], pseudolinearization methods [5I[6],
extended linearization methods [7], and variable struc—
ture approaches [8]-[11].

However, since all of linearization methods require
an accurate plant model in order to make a linearized
error dynarnics either globally or locally, the accuracy
of statc reconstruction heavily depends on the accuracy
of the model. Hence, for plants under larger paramcter
variations or model uncertainties, the observation accu-
racy could suffer. Even lhough observers based on
variable structure approaches arc shown to be very
robust against bounded modeling errors, these obser-
vers also need a plant model for a sliding mode behavior,

Obtaining an accurate plant model is often a time~
consuming and complex procedure, and the model thus
obtained is still vulnerable to some inaccuracies; for
instance, in the identification of robot model, there are
maccuracies in the inertia matrix, the Coriolis forces,
and the gravitational components. In addition, if some
of the observers ahove are used for control purposes,
the burden for the rcal-time computation of the plant
model could be quite large depending on the order and
complexity of the model. For instance, in the observers
based on the linearization methods or the variable
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structure methods, one needs to compute the nonlinear
plant dynamics on a real-time basis. Although nowa-
days hardware architectures based on advanced mi-
croprocessors can support real-time routines of the
above observer algerithms at sufficiently fast sampling
rate, the problemns of the hardware cost and imple-
mentation complexity are still non-trivial. Thus, this
computational burden could obviously inhibit attempts
to implement the observers to real systems.

With these issues in mind, the time delay observer
(TDO) has been proposed for nonlinear single-input
single—output (SISO) plants that are in the phase
variable form [12]. The essential idea behind this
ohserver came from the time delay control (TDC) [13]
[14], that is, using time-delayed information (the value
of the control inputs and the derivatives of state
variables at the previous time step) to estimate both
the plant dynamics and the uncertainties. Using this
time delay estimation, the TDO has three merits for
nonlinear SISO plants in the phase variable form: first,
the TDO does not require a priori knowledge of a
plartt model, and hence the structure of the TDO is
very simple (simplicity); second, the scheme does not
require substantial amount of real-time computation in
implementation due to the simplicity (nwmerical
efficiency); third, the TDQ is very robust to modeling
errors (robustness).

In enginegering practice, several plants must be deall
with in a nonlinear multi-input multi output (MIMO)
plant, which includes robot dynamics with flexible
joints, magnetic bearing systems, brushless DC motor
systems, and so on. For these plants, the analysis and
synthesis of an observer need to be based on the
MIMO system theory. Several observers for nonlinear
MIMO plants have been developed [21[7][8][10115].
Among linearization methods, Krener and Respondek
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[2] designed a global linearization observer for MIMO
plants wherc the full Jacobian matrix of coordinate
transform is integrable. Birk and Zeitz [15] designed
nonlinear observers for MIMO plants using a trans-
formation into the nonlinear observer canonical form
and an extended linearization. In variable structure
approaches, Walcott and Zak [10] proposed a variable
structure observer for the MIMO plants that satisfy
the matching condition, and Slotine et al. [8] extended
a sliding observer for SISO plants in phase variable
form to MIMO plants which meet the observability
condition. However, similar to SISO case, most of the
MIMO observers above require a priori knowledge of
plant model for an observer design and real-time
computation of nonlinearities in practical implementation.

In this paper, we extend the TDO method to gencral
nonlinear MIMO plants. For this purpose, the trans
formation into generalized observability canonical {orm
(GOBCF), introduced by [4], is used. More specifically,
the TDO is designed on the basis of GOBCF, in the
sense that it reconstructs the states of plants expre-
ssed in GOBCEF. Nevertheless, coordinate transform is
not required, if wc use the model independence
property of the TDQO -- which is the essential ideca
underlying the effectiveness of the NMIMO TDO
described in this paper. This point will be explained
more in detail in 2.4. Through this extension, what we
want to contribute is twolold: to develop the TDOQ
method so that it can be used for a wider class of
nonlinear plants; and to confirm that the designed
observer preserves the three merits of the TDO for
SISO plants (simplicily, numerical efficilency, and
robustness).

Since the intended purpose of the TDO is to control
nonlinear plants, our main concem is to Improve
control performances when the TDO is connected with
nonlinear controllers. In some plants, one possible way
to implement nonlinear controllers in which only the
plant output is available is to use the numerical
differentiations of plant output, and then to estimate
the states through the coordinate relations between the
output derivatives and the actual states. How will the
controller-"TDO system perform compared with the
controller-numerical differentiation system and the
conlroller-actual stales system? This is our immediate
concern. Thus, the performances are compared by
simulation using a two-link manipulator with flexible
joints and experiment on a two-dof SCARA robot.

In the following section, the TDQ will be proposed
for nonlinear MIMO plants; and its convergence,
numerical efficiency, and robustness will be analvzed.
In Section 3, a simulation study will be undertaken to
assure the validity of the ohserver. Section 4 will
present the experimental results, followed by the
conclusion in Section 5.

II. Time delay observer for MIMO plants

The TDO for nonlinear MIMO plants is based on
the GOBCF proposed by Zeitz (1984). The resulting
TDO does not require a plant to be transformed into
the GOBCF; rather, the TDO rcconstructs the states
for the plant as if it were in the GOBCF. We will
discuss this point in more detail in section 2.4.
1. Plant dynamics in the GOBCF

Although the design of the TDO does not require
plants to be in the GOBCF, the GOBCF is derived to
provide the background for the TDO. The nonlinear
MIMO plant under consideration is of the following
form:

x=1f(x,u),
y =h(x,u), (D

where, x=®", u=®", and y=%®R%encte the state
vector, the control input vector, and the outpul vector,
respectively; £(x, 1) € ™! and h(x, u) = [(x, u) h(x,
W), hy(x, ) E R are nonlinear functions, which
are assumed to be sufficiently continuous and
differentiable with respect to x and u (g subsystems
with respect to the outpul y).

For the plant to be expressed in the GOBCF, (1)
must meet the observability condition in [4]:

oh,
%)
(r}’Nh, ) .
Ax J =n,fori=1q, 2 A, =0,
. b

=)
7% (2)

Q,(x.0)

where QUE)=[Q/ (xW).-.Q,] (x W] denotes the obser-
vability matrix, N the differential operator defined as

a

=N 'h )",
ax

Ny =[N T ]
ax
N =h,and W=[u. i, 0] 3

and r, denotes the selected degree of i-th output.

Notice that given a nonlinear MIMO plants (1), the

GOBCF in general is not necessarily unique, the

dimension of 7-th subsystem r, ~~ and hence Q(%, u)

— could differ, thereby forming different Q(x, u) [4].
The coordinate transformation 4]

zp | |v,(x1) N (x.1)
L= P Lwith v (x, @) = : i
zﬂl LVU(X‘E) ’)\!ﬂlnlh: (X,E) (4)

(1) VAl

then renders (1) to the following GOBCF:
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Note that it is assumed that the coordinate trans-
formation v(x) in (4) is a smooth function, and its

inverse v '(x) exists and is smooth (in other words,
v(x) is a diffeomorphism). Then, the term ai(z, u) can
be determined by

a,(z,u)=N 'hJ(x,u)hv_,(zi). ®)

Note that determining ai{z, u) requires the inverse
transformation:

x=v (z,m), (7)

which in turn requires a plant model.
2. Derivation of TDO

In the transformed coordinate, suppose that for each
subsystem of (5) an observer of the following form is
available:

2, =E,% +a,(z0+K,(CZ -y, ®)

where Z; € ®™ denotes the reconstructed state vector
for each subsystem z; and K; e ®** the observer gain
matrix for each subsystern. Then the subsystem obser-
vation error € =%, —Z; has an exponentially convergent
dynamics as follows:

ét =(En, +K1Ci)ei’ (9)

where an arbitrary convergence speed can be achieved
by a suitable choice of K.

In order to realize the observer, one must be able to
estimate the uncertainty, ¢ (z.0) in a;(zu). To this
end, we have adopted from TDC [13] an especially
efficient estimation method: first, use the fact that
2;(z,0) may be assumed mostly as a continuous
[unction, from which we can derive the following
formula, for a sufficiently small time delay L,

a,(z,0) = a,(24.1), 0. 1)) (10

Secondly, using (5) and (10), obtain the following
estimation for the uncertainties, @,(z,4):

4 (2U) =2, = p (11

In the digital implementation, for which TDO is
intended, the value of L is normally set to be the
sampling time T, If the convergence specd of i-th
subsystem error dynamics (9) s made mwuch faster
than that of the dynamics of 4,(z.W) the following
holds:

a;(2,10) =Z;in,(:-1.)~ 12

Finally, substituting (12) into (8) and introducing a
constant @; leads to the following TDO equation for
i-th subsystern,

i( =E, % +¢, blx(n,—l)gz’:xn,(l—L)T +K (G2, -y)) (13)

The TDO equation for the total system is then

al[le(».—l)ff-h.,u-z.)]' K (CZ,-y)

=K+ : : .
, k)lx(nv—l)iéqn,(r—l,)]’ Kq(cqiq "yq) (14)

The idea behind introducing the constant a: is based
on the attempt by [16], that is, infroducing @, has the
effect of using a low pass filter. This point was
explained in more detail in [12].
3. Convergence of estimates

The observation error dynamics is derived in
Lemma 1, and the conditions for its convergence are
provided in Theorem 1; proofs are presented in the
appendix.

Lemma 1: The TDO in (14), if used for the
nonlinear plants in (5), has the following observation
crror dynamics for cach subsystem:

1 :Aiei +B"}’,(Z,E,L), (15:’
where
Ke 10 0
& ,{2 0 ! , 0 Qrext
G =| o |With Em 41 = 8 Ai = ’ N : Be=| o |
in Qoo 1 .
0 o g @y (161

¥i{z,0,L) = (Ma[(z,ﬁ) +y, (L) -3‘—¢, (z,u,L)
L o L

] 1

] (17)
with w.(L)= Tnlaen _E'L"'U_“ - g:m,
aZy_py gy ),

Theorem 1: In the subsystem error dynamics (15), if

1) for all £>0s [@@W)|< B <o, (L) <¥ <20, g
|6:(2, ) < D; <o,

2) every eigenvalue of A, is distinct and has a
negative real part, be it real or complex,
then the estimation error for each subsystem is

and ¢i (Z,ﬁ, L) =al(z’ﬁ)_
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exponentially convergent to the open domain
B,(6,)={e:0<|&] <5} (18)

where

R

with B = (1-0,) B + o, LY, + oD,

and T denotes a transform matrix to diagonalize A,

In addition, the steady state estimation error, "er,, ” is
bounded as follows:

2.1

Remark 1 : The relationship (18) in Theorem 1 may

K,* B (19)

. \/(1 + K2 Ky )

be used to eslimate "E,—"; given K;, and @, and L, they
can be used to estimate “T"_I'IH’I"'H, ¥, and &;, and

ultimately HE"., "

Remark 2 : If the coordinate transformation
z=v(x,U) is one-to-ome mapping, then the
convergence ol the estimation error in GOBCF,
€=2—z, guarantees the convergence of the
observation error in the initial coordinate, x~x.

4. Numerical efficiency

In this subsection, we emphasize design simplicity
and implementation practicality (i.e., uging a micropro-
cessor). As seen in (14), the design of the TDO does
not require the knowledge of nonlinearity &/(z.u),
instead it only requires the simple algorithm of time
delay estimation. In some plants, the form of a;(z,0) is
very complex and the computational amount of it can
be large. The computation effort at each sampling
amounts to (n+2g) multiplications and (n+2¢) additions.
For example, let us scc the equation (24) of two—dof
manipulator with flexible joints. In this case, the total
computational amount of the TDO is 12 multiplications
and 12 additions; which is about one eighth of that of
nonlinear observer using global linearization methods,

The states that the TDQ reconstructs are those for
the plant in the GOBCF; yet, the TDO does not
require the transformation of the plant in (1) because
the only information the TDO requires is y, which is
already available from (1). Since the intended purpose
of using the TDO is primarily to control nonlinear
plants, one may do so in the transformed coordinate if
the coordinate transformation is diffeornorphism [17].
For instance, in several control techmiques based on
feedback linearization [17] and on the sliding mode
control 18], control actions can be made by using the
states of the transformed coordinate. As seen in (14),
the TDO can be designed even if the transformation is

not known since it only needs the transformability
condition. Therefore, if the TDO is used for the above
control structures, certain design and implementation
advantages are produced.

If in some situations, however, the states are recon-
structed in the initial coordinate, X(f) can be obtained
by using the inverse transformation (7):

k=v'(@,W) (20)

Note that the inverse transflormation requires both the
knowledge of the plant model and the computation
based on it and that it mayv also deteriorate
reconstruction accuracy as modeling errors becorme
larger.
5. Robustness issues

In order to test the robustness of TDO against plant
uncertainty, we use the result of [12] and equation
(19). As seen in (19), the steady statc observation
error due to plant uncertainty is mainly dependent on
the observer gain K and ¢, which also affect the
sensitivity to sensor mnoise [12].  Accordingly,

(1+K,21+---Kz%,‘_l)/ Kin decreasing and increasing a:
close to 1 improves the performance robustness to
plant uncertainty but makes the observer more
senslfive to measurement noise whereas increasing

(L K+ K )/ Ki and decreasing a; reverses the
balance. Therefore careful tuning a; of is required for
a good compromise between robustness to uncertainty
and sensitivity to measurement noise.

Moreover, from our practical experiences in some
simulations and experiments, we have found that
faster sampling rate improves both the performance
robustness to plant uncertainty and the sensitivity to
measurement noise. Fortunately, owing to its
substantial simplicity and numerical efficiency, to
increase the sampling rate is relatively easy with the
TDO.

6. Gain selection method

The parameters, ¢;, L, and K;, can be selected so
that the eigenvalues of error dynamics in (15) may be
placed at prescribed locations. The procedure may be
summarized as follows:

1) Obtain the characteristic equation from (15),

- n 1-a, -
B T K,,]: "+ %K“ + K,zlf" .
I~ 2, |i-a Kap _ ’
+%KM,—Z+KM,—1]S +%K"ﬂ,—l]s+a,l. —O, (21)

and a characteristic equation with desired eigenvalues,

G +A1.S'n' +A25”'_] RS An‘s+An,+] =0, (22)

2) Compare, term by term, the coefficients of (21)

-, Kor K

and (22) and eliminate =z 7 %27 Mu-le successively,

to obtain an m-th order polynomial cguation of pi
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2 n -t n,
An, +An,—l p, +An,—2pl +t Al PP =0, (23)
where p, =K, - A

3) Solve (23) for p; (equivalently, Ka).

4) Select a sufficiently small L considering CPU
power.

5) Solve the remaining parameters by comparing the
cocfficients of (21) with those of (22), which arc
obtained as follows:

o = ‘

i T (A -K, L+
-,
Ko=A -y K

I-a,
K,=4, T M2

K.

in -1

-
Apa— = Kin,-Z

n—1 o,L

K, : =o LA,

(24)

n

6) After experimenting for the sensitivity to noise,
adjust the eigenvalues and repeat the procedure unti] a
prescribed specification is satisfied.

7) Follow the procedure above, for i=1 to ¢

III. Simulation

The TDO is implemented for the position control of
two—dof manipulator with fexible joints. Through this
simulation, we want to verify the effectiveness and
applicability of the TDO, and to test the robustness of
the TDO against modeling error.
1. Description of plant

The example we will present is a two-dof mani-
pulator with flexible joints (see [19]) whose schematic
diagram is given in Fig. 1 and modeled as follows:

k(o = x) = hpsin(2x, )4 %

¥ = >

hs + hycos™(xy)
¥o= k| ky(x -x4)+hﬁcos(x2)+%sin(2x2)k,2}
¥ = M1+k,(x1-x3),

hy

. _ Wyt kz (XZ - x4) (25)
Xy = '__"h—""'"'"_':

‘A

7

Fig. 1. Schematic diagram of two—dof manipula-
tor with flexible joints.

where x; and. xz denote the positions of the first and
second flexible links; x3 and xs the positions of the
first and second motor shafts; w and we the first and
accond control inputs, respectively; A the parameter
consisting of the mass, the moment of inertia, the
gravity; k, and the spring constant ol the flexible
links. The numerical values of parameters in equation
(25) used for simulation are listed as follows:

By =0.095(kgm?®)™" by =22.058kgm?

by =23.296kgm®  h, =70.656kgm’

hs = 0.084kgm® e = 291.106kgm”
ky = 29800kgm® /s> k, = 14210kgm* /s

In this example, assuming that all the positions of
flexible links are available, (25) can be expressed in
the nonlinear MIMO state equation form as (1) with
the state vector X=[xl1kl!x2!x21x3ax3ax4v-kd]r and output
vector y = [xl,xz]T.

The observability matrix (2) can be obtained by
computation, which is rank 8 for the parameters listed
ahove. Therefore, the syslem (25) is transformable into
the GOBCF. Coordinate transformation,

1 = M52y = K Zgp = XpaZyy = Xy
ki (x = x3) — by 8Iin(2x, ) % %,
(hs + by cos” (x,))
_ 2k sin(2x;)[h, sin(2x,) %% — Ky (4 ~ x3) )%,
(hs + 1y cos* (x,))?
4 2 cos(2xy Viyks® — k(% — i)
(hs + Iy cosz(xz))
. by Sin(2u; )k, (xy = xy) + by CcOS(x,) + h—;sin(.?xg).&lz]kl
(hs + 1y cosz(xz))

Zy3 =l [1(2()(2 —xg)+ hgcos(xy)+ "T’sin(sz)J'cf]

14

k]

- Z9q =My [(k2 —h,sin(xg) + Ay cos(Z,\‘z)x]Z)ic2 - kz)'c,,] (26)

N Iihy sin(2ua )Ly () = x3) — Ay Sin( 20, ) X 1
(hs + 1, cosz(xz))

.

renders (25) to the GOBCF:

z, E, 0]z _ a,(z,u)
Z, 0 E,|z,| |a,zmf

y [ZIHZ?_l]rv @n

where

—kyzi3 + 61y C08(225 N2p320” + Zi28z3%23)
+hy SIN(225 (3210722 +3213253 + 3200204 — 4212 27)
k
="Lhg+hy 0052(222, N+
hy
kihy . k
L2 6in(22,)) 202225 + 11
hy
(hs -+ by c08* (224,))

al (zvl_-i) =

1, (z.0) = hy [h6 (cos(z21 Yzas” +8i0(2, )20 )~ k2123]
+hhy Si"‘(2321)(2«"-1222222 —’7131 — i (28)

2
— hyhy cos(2z,, )(4212213222 + 2 223)
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k, hkyhy ks . 2 Mk
-zt €08(25) )+ 22 5in( 2291 ) z(n" ——2
(h,, 23 ha (za1) 2h, sin(2z41) 7y " Uy

The corresponding TDQ for the GOBCF (27) can be
designed by equation (13), which completes the design
procedure. Il reconstruction of the initial states is
required, it can be obtained using inverse coordinate
transform.

2. Simulation conditions

With the initial condition, x=[0,0%,0,0,0,0,0f, we
applied a step-type command for the simulation and
then adopted two control algorithms: an /O lineari-
zation controller (IOLC) algorithm [17] and an L/O
linearization using a time delay control (IOLTDC)
algorithm [16]. The IOLC requires the computation of
the system nonlinearity in the initial coordinate, x, or
in the transformed coordinate, 2, in order to obtain a
linear input/output behavior. In contrast, the IOLTDC
requires little @ priori knowledge of the dynamics of
the system. The uncertainties in the dynarmics are com-
pensated for through the time delay estimation using
the measurement or estimation of z and z. Therefore,
the IOLTDC ulilizes the states of the transformed
coordinate, z, not those of the initial coordinate, X.

In order to compare the performances, we applied
these controllers together while utilizing the actual
states (x and z), the observed states by the TDO, and
the estimated states by numerical differentiations of
plant output. We will use the responses of the system
to the control utillizing the actual states as a bench-
mark [or the control utilizing the TDO and numerical
differentiations. Then we will do a comparative study
of the performances of the three control systems. The
TDO gains will be as follows: Ku = -380, Kz = -57610,
Koo = —14423, Kz = -5456737, Koz = 682100, Kis = -4862739,
Koa= —486278 @1=022=08, and L=0001s. From this
simulation work we will know if the TDO works
properly when connecled to the controllers.

3. Simulation resulis

In the first simulation, we applied the IOLC in two
different cases: without a modeling error and with a
30% modeling error. A 30% modeling emor was
generated by setting the f's of the model to be 07
times smaller than those of the plant. Figs. 2 and 3
show the plot representing the step responses of the
systems in these two cases. These figures indicate the
performances of the controller-TDO system and the
controller-numerical differentiation system versus those
of the benchmark.

As shown in Fig. 2, in the system without the
modeling error, even though the response of the
controller-TDO system in link 1 is slightly slower
than that of the benchmark, the performance of the
controller-TDO system is adequate from a practical

Step responses of axisl Step responses of axis2

time(sec) time(sec)

_: controller-TDO system case
: controller-numerical differentiztion system case
........... : controller-actual states system case

Fig. 2. Step response of two-dof manipulator
with flexible joints using I/Q linearization
control without a modeling error.

Step responses of axis! Step responses of axis2

1.5 3
i 250

ik P U — ;

] 2

E ] E ’
05 1.5
1
] 0.5

0 5 5
time(sec) time(sec)

__ _ _ - controller-TDO system case
: controller-numerical differentiation sysem cage
.......... controller-actual slates sysiem case
Fig. 3. Step response of two-dol manipulator
with flexible joints using /O linearization
control with a 30% modeling error.

point of view. In contrast, the responses of the
controller -numerical differentiation system are more
oscillatory and show a larger overshoot. Fig. 3 shows
that the modeling error results in sluggish responses
(a larger overshoot), in all three of the control
systems; vet, the responscs of the controller-TDO
system coincide with those of the benchmark, thereby
demonstrating the robustness of the TDO to the
modeling error. In comparison, the responses of the
controller-numerical differentiation system show larger
deviations from those of the benchmark.

In the second simulation, we applicd the IOLTDC in
two different cases: without a modeling error and with
a 30% modeling error. Fig. 4 and 5 show the res-
ponses in these two cases. Similar to the responses of
the TOLC, the responses of the controller-TDO systern
and the benchmark follow the desired responses well
under the systemn without the modeling error, whereas
those of the controller-numerical differentiation system
are more oscillatory and show a larger overshoot (Fig.
4), This result confirms the advantage of using the
TDO in designing the IOLTDC. Fig. 5 shows that the
modeling error has little effect on the responses of the
controller-TDO systemn and the benchmark, confirming
that the robustness of the IOLTDC to the modeling
error is mantained in the controller-TDO system and
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Step responses of axis1 Step responses of axis2

1.5 4

5 J

A --7/_'3‘:_,:-\.\__71.—5‘“. ._\‘\....T‘-\...-—-_——-n

g ¥ o2t

1
0

5 0 5

melsee) time(sec)

w - - . : controller-TDO syslcm casc
: controller-numerical differcnlintion system case
werenerewr | COMUrONiEr-actual states system case

Fig. 4. Step response of two-dof manipulator with
flexible joints wusing I/O linearization
using TDC control without a modeling
SITOY.

Step responses of axis] Step responscs of axis2
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_____________ POTTTT T T T T T T
{ , 215 ;
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g N g
t )
0.5 | 2,
t 1
1 !
J
] L3
0 1 2 3 4 1 2 3 4
time(sec) time(sec)

——— = controller-TDO system case

Fig. 5. Step response of two—dof manipulator
with flexible joints using I/O linearization
using TDC control with a 30% modeling
error.

the benchmark. In contrast, the responses of the con-
troller-numerical differentiation system are quite diffe-
rent from those without the modeling error and they
also tend to diverge widely, so we did not plot their
TeSpONSes.

IV. Experiment

To test the performance of the TDO in a real
system, we applied it to a two-dof SCARA robot
system. This system is categorized into a MIMO plant
in phase variable form. Thus, for the controller and
ohserver design, the coordinate transformation is rot
required. In this experiment, the TDO was used in a
position control loop in cowjunction with the TDC,
which requires velocity and acceleration to be recons—
tructed from the position measurement. The purpose of
this experiment is twofold: to show that the TDO can
be readily applied to the practical control areas and to
investigate how it compares with another method that
does not require a model, numerical differentiation
which is also frequently used in practice.

The experimental systern consists of the following
components: Each joint of the robot, driven through
harmonic drives with reduction ratios of 100:1 for joint
1 and 80:1 for joint 2, has a resolver with a resolution

80— step response of & 20 le.P respanse furez
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—— : TRC with numerical differentiator case
------ + TDC with TDO casc
Fig. 6. Experimental results of a  two-dof
SCARA robot when step input is applied:
the position responses, velocities and
accelerations reconstructed with numerical
differentiator and TDO.

of 4096 pulses/rev for position measurement. For links
1 and 2, the lengths are and 4 = 35cm and & = 20cm,
the masses are rmn=1117kg and rmz=6.82kg, the
moments of inertia are [1 = 1.03kgm® and I = O.224kgm2,
and the distances from the joints to the centers of the
mass are Ly =30cm and L;=28cm, respectively. For
this robot, an accurate dynamic model is available [19].
The digital implementation of the TDO and TDC was
made with the sampling frequency of 1000Hz in a
multi-processor based system called CONDOR, which
is described in detail in [22].

Fig. 6 shows the position responses, velocities, and
accelerations of joint 1 and joint 2 with the numerical
differentiation and TDO due to the step input of 6. =
8z=60deg. As shown in Fig. 5 the -control
performance with the TDO is slightly better than that
of the numerical differentiation in terms of overshoot
and rising time. The reconstructed velocities and acce-
lerations confirm that the TDO reconstructs the states
smoothly and stably. By comparison, the numerical
differentiation amplifics the sensor noise to a sub-
stantial degree.

V. Conclusion
This paper has developed an observer design me-
thod for nonlinear MIMO plants by applying trans-
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formation into a GOBCF coupled with the TDO. The
TDO method is extended from SISO plants in phase
variable form [12] to MIMO plants in the general form
of (1). As to the resulting TDO, the convergence of
the observation error is analyzed and it is discussed
that the resulting TDO has preserved the three merits
(i.e., simplicity, numerical efficiency, and robustness)
of the TDO, firstly introduced for SISO system.

The proposed TDO reconstructs states for the plant
in the GOBCF without the real time computation of
system nonlinearity. When the TDO is used for
several control schemes based on the transformed
coordinate, it can be designed even il the trans{orma-
tion is not known, and it only needs the transformabi-
lity condition. Under these control structures, the
proposed TDO can be easily implemented with faster
sampling rate than other nonlinear observers.

Simulation results verify that the TDQ is an effec-
tive observer for nonlinear MIMO systems. When the
TDO is used together with an IOLC and IOLTDC, its
control performance appears to be similar to those
using actual states and superior to those using
numerical differentiation. The TDO is, therefore, a
promising observer design technique for the IOLC and
IOLTDC. From the experiment on a robot position
control, we have shown that the TDO may he
elfectively used in a real closed-loop system.

The limitations of the TDO occur when the states
in the initial coordinate are reconstructed. In this casc,
the TDO needs a nonlinear coordinate transformation
s0 that the inaccuracies in the plant model can reduce
the state reconstruction performance. To take this
limmitation into account, research on the modification of
the TDO is currently in progress.
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Appendix
Proof of Lemma 1: Subtracting equation (5) from
equation (14), the observation error dynamics for i-th
subsystem becomes

€ = (En, +K,C,)e, + alRiéi(r—L) - @, (z,0), (29)

where R, denotes an m; Xrm; matrix, all the elements of
which are zero except for Ri(miXm;) =1 and

(2,1 = 0,y (- 00, @D a0, BEL . (30)

Since €i¢-1) =€ —[& "éi(:-L)], (29) may be expressed as

(In, —a,—R")éi = (En, +K1C1)ei

_'aiRi[él _el(r—L) ]-'q)i(zvﬁ)- (31)

For a sufficiently small L that guarantees the conti-
P . €€,

nuity assumption of (2.4), it holds that —f— =

é,-—O(Lz). which is nsed to rearrance (31) into the

following:
o LR E, +(In, -oR;)é; =(E, +K,C)Je;
+o,LR,O(1}) ~®;(z,m), (32)

Define a new state variable €in+l :én,, then the last
equation in (32) becomes

éinl = €in, 41
. Km (l_a) (1"0.’) —=
=—tg ~—ey,  ———=a;(z, 1)
em,+l 0-’,~L €i O."—L e‘".‘” [X,vL (
; —
—W (L) +——¢ (z,9,L (33)
V()4 (2., L)

Combining (33) with (32) leads to the aforementioned
crror dynamics (16). (Q.ED.)
Proof of Theorem 1t Since the distinct eigenvalues of

Zx,- have negative real parts, there exists a transform

matrix T; that diagonalizes ;‘;,-, namely
A =TAT™, (34)

where /A; is a diagonal matrix whose diagonal
elements are the eigenvalues of A;. By using Ti (16)

can be transformed to
& =Ag -TBy,zu,L), (35)
where

g =T¢. (36)

Defining a Lyapunov function as Vi =—4& A, ”'&; and
using (34), (35), and (36), may be obtained as follows:

Vi = _%EiT (A:'TAJ‘l + Ai‘le )31 +E¢TA1_1T1§17'.' (z,00,L)
=-¢"e,+e/T7A'B,y,(2,0,L). (37)

The inverse of /1, can be symbolically obtained as
follows:

0 —a.
- WD al’7 v, | - o.L \f; Ko
Ai = In, Ki": Km' Vi =
Oprny - I : 0 K

Using the matrix norm properties together with (17)
and (36), (37) leads to

V,<—lig I° +lg, T, ||||K By, (z,ﬁ,L)"

A+ Kl ot K,,,,_ﬁ)ﬁ
K’ oG8

<{Te] HT@H"M\/

Hence, for any that satisfies

2 2
I+ K" 4+ K, )

I

in,

V; remains negative, causing & to converge io B(3,).
In addition, the sieady state error can be derived
from (15) as follows:
E,” = A,']f’.,y, (z,U,L),,. (39)
Using (39) and (17) together with the upper hounds of
la;(z, @l Iy (L)L 1¢;(2,0), one can immediately obtain
the steady state observation error in (20). (QE.D.)
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