• Title/Summary/Keyword: nonlinear numerical method

Search Result 2,025, Processing Time 0.029 seconds

Research on Numerical Calculation of Normal Modes in Nonlinear Vibrating Systems (비선형 진동계 정규모드의 수치적 계산 연구)

  • Lee, Kyoung-Hyun;Han, Hyung-Suk;Park, Sungho;Jeon, Soohong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.795-805
    • /
    • 2016
  • Nonlinear normal modes(NNMs) is a branch of periodic solution of nonlinear dynamic systems. Determination of stable periodic solution is very important in many engineering applications since the stable periodic solution can be an attractor of such nonlinear systems. Periodic solutions of nonlinear system are usually calculated by perturbation methods and numerical methods. In this study, numerical method is used in order to calculate the NNMs. Iteration of the solution is presented by multiple shooting method and continuation of solution is presented by pseudo-arclength continuation method. The stability of the NNMs is analyzed using Floquet multipliers, and bifurcation points are calculated using indirect method. Proposed analyses are applied to two nonlinear numerical models. In the first numerical model nonlinear spring-mass system is analyzed. In the second numerical model Jeffcott rotor system which has unstable equilibria is analyzed. Numerical simulation results show that the multiple shooting method can be applied to self excited system as well as the typical nonlinear system with stable equilibria.

NUMERICAL RESULTS ON ALTERNATING DIRECTION SHOOTING METHOD FOR NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

  • Kim, Do-Hyun
    • The Pure and Applied Mathematics
    • /
    • v.15 no.1
    • /
    • pp.57-72
    • /
    • 2008
  • This paper is concerned with the numerical solutions to steady state nonlinear elliptical partial differential equations (PDE) of the form $u_{xx}+u_{yy}+Du_{x}+Eu_{y}+Fu=G$, where D, E, F are functions of x, y, u, $u_{x}$, and $u_{y}$, and G is a function of x and y. Dirichlet boundary conditions in a rectangular region are considered. We propose alternating direction shooting method for solving such nonlinear PDE. Numerical results show that the alternating direction shooting method performed better than the commonly used linearized iterative method.

  • PDF

Energy based approach for solving conservative nonlinear systems

  • Bayat, M.;Pakar, I.;Cao, M.S.
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.131-136
    • /
    • 2017
  • This paper concerns two new analytical approaches for solving high nonlinear vibration equations. Energy Balance method and Hamiltonian Approach are presented and successfully applied for nonlinear vibration equations. In these approaches, there is no need to use small parameters to solve and only with one iteration, high accurate results are reached. Numerical procedures are also presented to compare the results of analytical and numerical ones. It has been established that, the proposed approaches are in good agreement with numerical solutions.

NUMERICAL SOLUTION OF A CLASS OF THE NONLINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

  • Saeedi, L.;Tari, A.;Masuleh, S.H. Momeni
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.65-77
    • /
    • 2013
  • In this paper, we develop the operational Tau method for solving nonlinear Volterra integro-differential equations of the second kind. The existence and uniqueness of the problem is provided. Here, we show that the nonlinear system resulted from the operational Tau method has a semi triangular form, so it can be solved easily by the forward substitution method. Finally, the accuracy of the method is verified by presenting some numerical computations.

A Numerical Method for a High-Speed Ship with a Transom Stern

  • Kyoung Jo-Hyun;Bai Kwang-June
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.3
    • /
    • pp.8-17
    • /
    • 2004
  • A numerical method is developed for computing the free surface flows around a transom stern of a ship at a high Froude number. At high speed, the flow may be detached from the flat transom stern. In the limit of the high Froude number, the problem becomes a planning problem. In the present study, we make the finite-element computations for a transom stern flows around a wedge-shaped floating ship. The numerical method is based on the Hamilton's principle. The problem is formulated as an initial value problem with nonlinear free surface conditions. In the numerical procedures, the domain was discretized into a set of finite elements and the numerical quadrature was used for the functional equation. The time integrations of the nonlinear free surface condition are made iteratively at each time step. A set of large algebraic equations is solved by GMRES(Generalized Minimal RESidual, Saad and Schultz 1986) method which is proven very efficient. The computed results are compared with previous numerical results obtained by others.

CHAOTIC THRESHOLD ANALYSIS OF NONLINEAR VEHICLE SUSPENSION BY USING A NUMERICAL INTEGRAL METHOD

  • Zhuang, D.;Yu, F.;Lin, Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • Since it is difficult to analytically express the Melnikov function when a dynamic system possesses multiple saddle fixed points with homoclinic and/or heteroclinic orbits, this paper investigates a vehicle model with nonlinear suspension spring and hysteretic damping element, which exhibits multiple heteroclinic orbits in the unperturbed system. First, an algorithm for Melnikov integrals is developed based on the Melnikov method. And then the amplitude threshold of road excitation at the onset of chaos is determined. By numerical simulation, the existence of chaos in the present system is verified via time history curves, phase portrait plots and $Poincar{\acute{e}}$ maps. Finally, in order to further identify the chaotic motion of the nonlinear system, the maximal Lyapunov exponent is also adopted. The results indicate that the numerical method of estimating chaotic threshold is an effective one to complicated vehicle systems.

Nonlinear Wave Interaction of Three Stokes' Waves in Deep Water: Banach Fixed Point Method

  • Jang, Taek-S.;Kwon, S.H.;Kim, Beom-J.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1950-1960
    • /
    • 2006
  • Based on Banach fixed point theorem, a method to calculate nonlinear superposition for three interacting Stokes' waves is proposed in this paper. A mathematical formulation for the nonlinear superposition in deep water and some numerical solutions were investigated. The authors carried out the numerical study with three progressive linear potentials of different wave numbers and succeeded in solving the nonlinear wave profiles of their three wave-interaction, that is, using only linear wave potentials, it was possible to realize the corresponding nonlinear interacting wave profiles through iteration of the method. The stability of the method for the three interacting Stokes' waves was analyzed. The calculation results, together with Fourier transform, revealed that the iteration made it possible to predict higher-order nonlinear frequencies for three Stokes' waves' interaction. The proposed method has a very fast convergence rate.

NUMERICAL METHDS USING TRUST-REGION APPROACH FOR SOLVING NONLINEAR ILL-POSED PROBLEMS

  • Kim, Sun-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.4
    • /
    • pp.1147-1157
    • /
    • 1996
  • Nonlinear ill-posed problems arise in many application including parameter estimation and inverse scattering. We introduce a least squares regularization method to solve nonlinear ill-posed problems with constraints robustly and efficiently. The regularization method uses Trust-Region approach to handle the constraints on variables. The Generalized Cross Validation is used to choose the regularization parameter in computational tests. Numerical results are given to exhibit faster convergence of the method over other methods.

  • PDF

A LINEARIZED FINITE-DIFFERENCE SCHEME FOR THE NUMERICAL SOLUTION OF THE NONLINEAR CUBIC SCHRODINGER EQUATION

  • Bratsos, A.G.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.683-691
    • /
    • 2001
  • A linearized finite-difference scheme is used to transform the initial/boundary-value problem associated with the nonlinear Schrodinger equation into a linear algebraic system. This method is developed by replacing the time and the nonlinear term by an appropriate parametric linearized scheme based on Taylor’s expansion. The resulting finite-difference method is analysed for stability and convergence. The results of a number of numerical experiments for the single-soliton wave are given.

Nonlinear vibration of oscillatory systems using semi-analytical approach

  • Bayat, Mahmoud;Bayat, Mahdi;Pakar, Iman
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.409-413
    • /
    • 2018
  • In this paper, He's Variational Approach (VA) is used to solve high nonlinear vibration equations. The proposed approach leads us to high accurate solution compared with other numerical methods. It has been established that this method works very well for whole range of initial amplitudes. The method is sufficient for both linear and nonlinear engineering problems. The accuracy of this method is shown graphically and the results tabulated and results compared with numerical solutions.