International Journal of Automotive Technology, Vol. 8, No. 1, pp. 33-38 (2007)

Copyright © 2007 KSAE
1229-9138/2007/032-05

CHAOTIC THRESHOLD ANALYSIS OF NONLINEAR VEHICLE
SUSPENSION BY USING A NUMERICAL INTEGRAL METHOD

D. ZHUANG"", F. YU" and Y. LIN?

bState Key Laboratory of Vibration, Noise and Shock, Shanghai Jiaotong University, Shanghai 200030, China
2School of Mechanical and Vehicle Engineering, Beijing Institute of Technology, Beijing 100081, China

(Received 13 December 2005; Revised 19 July 2006)

ABSTRACT-Since it is difficult to analytically express the Melnikov function when a dynamic system possesses
multiple saddle fixed points with homoclinic and/or heteroclinic orbits, this paper investigates a vehicle model with
nonlinear suspension spring and hysteretic damping element, which exhibits multiple heteroclinic orbits in the
unperturbed system. First, an algorithm for Melnikov integrals is developed based on the Melnikov method. And then the
amplitude threshold of road excitation at the onset of chaos is determined. By numerical simulation, the existence of chaos
in the present system is verified via time history curves, phase portrait plots and Poincaré maps. Finaily, in order to further
identify the chaotic motion of the nonlinear system, the maximal Lyapunov exponent is also adopted. The results indicate
that the numerical method of estimating chaotic threshold is an effective one to complicated vehicle systems.
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1. INTRODUCTION

Since the disturbance from the road may induce un-
comfortable vibration and noise in the vehicle body, it is
important to study the dynamic behaviors of the vehicle.
Many studies have been carried out with linear vehicle
model (Tkenaga et al., 2000; Hady and Crolla, 1992).
However, an automobile is a nonlinear system in practice
because it consists of suspension, tire and other com-
ponents which have nonlinear properties. The chaotic
response may appear as the vehicle moves over a rough
road.

The investigation on intelligent vehicle suspension
system with hysteretic damper (such as ER-fluid damper
and MR-fluid damper) has been paid more and more
attention in recent years (Wang et al., 2003; Peel et al.,
1996). Hysteresis in vehicle system may lead to many
complicated nonlinear dynamic behaviors, such as bifur-
cation and chaos. The Melnikov function is an effective
analytic approach to derive the critical condition for
chaotic motion of the system and has been used widely
(Cveticanin, 1993; Xu et al., 2005; Ge and Ku, 2000).

Based on the Melnikov function, if there is an inequa-
lity which guarantees the existence of a simple zero of
Melnikov function, chaos will occur in the system.
However, a number of studies on some dynamic systems
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only consider the case where there exists a pair of or a
single homoclinic and/or heteroclinic orbits in a non-
autonomous system (Kovacic, 1993), and these analytical
expressions of homoclinic and/or heteroclinic orbits can
be easily obtained, so that the calculation of Melnikov
functions is easy or at least is possible by using the
standard integral tables or residue computations. But if a
dynamic system possesses multiple saddle fixed points
with homoclinic and/or heteroclinic orbits, it is impossible
to obtain the analytical expressions of homoclinic and/or
heteroclinc orbits in the unperturbed system. Hence, it is
necessary to develop a numerical approach of Melnikov
function.

The purpose of this paper is mainly to present a
feasible numerical computation method to estimate the
threshold of chaos and to analyze the chaotic motion of
nonlinear suspension system. A vehicle model with non-
linear suspension spring and hysteretic damping element
is presented as a case. The analysis of Melnikov function
is performed and a criterion for the existence of chaos is
derived. Based on the transformation between time
variable and state variable, an algorithm for Melnikov
integrals is developed for the present vehicle model. The
results by analytical expression and numerical computa-
tion of Melnikov function are compared in order to verify
the feasibility of the developed algorithm. At the same
time, the amplitude threshold of road excitation at the
onset of chaos is determined. By the numerical simulation,
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the existence of chaos in vehicle system is investigated
via time history curves, phase portrait plots and Poincaré
maps. And the maximal Lyapunov exponent is also
adopted to further identify the chaotic motion of the
nonlinear system.

2. MATHEMATICAL MODEL ANALYSIS

A vehicle model with nonlinear suspension spring and
hysteretic damping element is illustrated in Figure 1.

The equation of motion of vehicle system is expressed
as below

M3 +F+F,=0 H

where M is vehicle body mass, F, is dynamic force of
nonlinear suspension spring, F, is hysteretic damping
force of damper, z, is vertical displacement of vehicle
body and z, is road input displacement from road
excitation.

Since sinusoid forcing function can be used to describe
the excitations caused by road surface roughness. Thus,
the road input is approximated by the equation

2o=1]sin(@7) 2

where 77 and @ is amplitude and frequency of sinusoid
road disturbance, respectively, and 7 is time variable.

The nonlinear spring force of suspension system is
assumed to have the following characteristics

Fi=K(zi~ 20)[ 1+ 04(21 = 20)"] &)

where K, is equivalent stiffness and ¢, is nonlinear
coefficient of stiffness.
The damping force with hysteretic property is given by

Fi=Ca(2)— Z0)[1 + 0u(2: — 20)2]_Cde1ay(zl - ZO)3 4

where C, is damping coefficient, ¢ is nonlinear coeffi-
cient of damper and C,,, is hysteretic coefficient. The
hysteretic damping force of nonlinear suspension system

L
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Figure 1. A vehicle model with nonlinear suspension
spring and hysteretic damping element.
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Figure 2. Hysteretic damping force of nonlinear

suspension system.

is shown in Figure 2.

Defining y as the relative suspension displacement,
namely, y=z,—z, and combining Equations (1)-(4), the
equation of motion of vehicle system can be written as

K (0K = Cuar) 3, Ca 0uCa3
Y+M)’+ M y +My+—M
=’ nsin( W7) )
YoM M T T
hetx=yy o J;’TZ ¢ T T

then the nondimensional equation of Equation (5)
becomes

f+x+k+ e[ + cx — fsin(Q1)]=0 (6)

where k=£_gil(3_—cde’“L 772’ = a;;{x 772 ;

KS
oM M M
= e Q: e
f C, WK wJ;

Equation (6) in state space form is given by

)h:xz
{ @)

Rr=—x—kxi—&[x; + cx; — fsin(Q1)]

in which & is small perturbation parameter. When &=0,
Equation (7) becomes an unperturbed system as below

X=X,
{ ®

. 3
Xo=—x,—kx]

When k > 0, that is, &K, > C..,, Equation (8) has only
one fixed point (0,0); however, while k <0, there exist
three fixed points (0,0), (= ./-1/k, 0). The eigenvalues of
unperturbed system are

Ay r=t J—1-3kx )
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For the fixed point (0,0), 4, ,=%i, hence, point (0,0) is
a center; however, the fixed points (x./-1/k, 0),
/?.1_2=iﬁ, are saddle fixed points of the unperturbed
system.

Since phase orbits cannot cross a center, the unpertur-
bed system shows a stable periodic motion and the
chaotic motion in the sense of Smale horseshoe cannot
exist in the system when & > 0. Hence, the case of k<0 is
investigated in this paper.

When k < 0, Equation (8) is a planar Hamiltonian system
with heteroclinic orbits. The Hamiltonian function is
H(x, xz)z)—c—;+“ﬁ+@ﬁ 10)

’ 22 4
As H(x.-1/k,0)=—1/4k, the heteroclinic orbits of
Equation (8) is shown in Figure 3.

When €% 0 is small enough, Equation (7) may have
transverse heteroclinic orbits. According to the Smale-
Birkhoff homoclinic theorem (Wiggins, 1988, 1990), the
existence of such orbits may result in chaotic motion.

3. MELNIKOV METHOD

The Melnikov function is an effective analytic approach
to derive the critical condition for chaotic motion and has
been successfully applied to some systems containing
multiple saddle fixed points.

Assuming the heteroclinic orbits of Equation (8) are
gi{D) = (i, Xo) and - qi(0) = (xy, X5) respectively, the
distances between the stable manifolds and unstable the
manifolds of heteroclinic orbits can be measured by
Melnikov functions M%) and M,(t), in which the
subscript “j” means that the direction of the heteroclinic
orbit is from x,; to x,;. If initial conditions for these
heteroclinic orbits are properly chosen, the Melnikov
functions M) and M;(z) have simple zeros and
nonzero derivatives M,-j (t) and M L {ty), which implies
the stable manifolds and unstable manifolds of hetero-
clinic orbits intersect transversely, that is, the chaotic
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Figure 3. Heteroclinic orbits of unperturbed system.

motion may occur in the system.
The Melnikov function M,(%) of Equation (7) for g;(?)
can be calculated as follows

My(t0)= J:N xZij(t){_XZij(t)_c[x2ij(t)]3}dt+

j X, (0f sin (Q1 + 10))dt

=—B,—cDy+f cos(Qty)E+f sin(Q1,) Gy
=-B,'j“CDij+fA,'j Sin(glo+ 0,,) (11)

where Bj;= IN [x2())’dt, Dy= .[N ()] dt,

Ey= [ xa(t) sin(Qo)dt, Gy= [ xay(r) cos(Qu)dr,

A=AEL + G2, G;=arctan(E;/G).

Owing to the following symmetry equations

Xy =50(—1), Xy (£)==3y( 1) 1
the Melnikov function M(1,) for g,(f) can be derived as
Mj,-([O)=—B;/-—CD,-/-—fA,-jSin(QIO + 0,]) (13)

Based on the Melnikov method, the amplitude threshold
of road excitation at the onset of chaos is obtained as

ﬂAij > |B,-j + CD,'j| (14)

Here, the equal sign corresponds to the case of
tangency between the stable manifolds and unstable
manifolds.

4. NUMERICAL COMPUTATION OF
MELNIKOV INTEGRALS

It is important to compute the Melnikov integrals so as to
verify the derived criterion. However, it is difficult to
obtain the analytical expressions for some complicated
dynamic systems, so numerical computations of the
integrals are very necessary. Since the time variable ¢ can
be written as functions of the state variable x for
heteroclinic orbits of the system (Yagasaki, 1994; Gao er
al., 2004), the computations of Melnikov integrals can be
transformed from that for the time variable ¢ into that for
the state variable x.

Assuming x;; < x,, according to Equation (8) and
Equation (10), when ¢> 0, it yields
dx 1 2 4
—H=x.J2H —xi —kx,/2 (15)
dt

By integrating Equation (15), time variable ¢ is given
by

- 4§
t= 16
Llij(o) N2H - fz—kfl/z (16)
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D, E;

ijs ijs Lijy

According to Equation (16), the equations of B;
G; can be written as

By= | J2H-x—kxi/2dx,

*1i

Dy=| Y(PH =X~ kxi12) dx,

Eij= SIH(Q I —dL-—) dx1

; g J2H - &~ kEY2

_ d¢
G.-j—_[ cos(Q j;] o m)dxl

The saddle fixed points x;; and x,; can be obtained by
numerically solving Equation (8) and Equation (10), and
the definite integrals By, Dy, E;, G; can also be numeri-
cally estimated by Simpson method

X1i

5. COMPARISON BETWEEN NUMERICAL
AND ANALYTICAL ALGORITHMS

In order to verify the validity of numerical algorithm, the
analytical expression of the Melnikov function is applied
as a reference in present paper. By applying the residue
computations, the analytical expressions of Equation (8)
are given by

x,,«,-(t):tA/__% tanh(ﬁzét)
Xy(8)= ij;{ sech (ﬁé)

Substituting Equation (17) into Equation (11), the Melnikov
function is computed as

a7

Mij(to) PU'—QU Sln(Qto) (18)
where P —i 4[2 ,
3k 35k

QiFfﬂQA/;l(sec h 34£2ﬂ!2)csch(3§ﬂ'9)

Therefore, the condition for chaotic motion on the
system satisfies

Q2P (19)

In this paper, the vehicle parameters are chosen M = 240
kg, K=16 kN/m, ¢,=0.5, C,=250 N-s/m, a;=-0.1, Cyy,,
=38 kN/m by refering to Li et al. (2004). Based on
Simpson method, the definite integrals By, Dy, E;, G; are
calculated by using MATLAB in the range of the
frequency we [2,12]. The threshold curves of ampli-
tude of road excitation in frequency domain are shown in
Figure 4, in which the solid line is computed by the
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Figure 4. Threshold curves of amplitude of road
excitation in frequency domain.

developed numerical algorithm; while the dotted line is
computed by the analytical expression. It can be seen that
the two results are in good agreement. If the amplitude 7
lies above the curves, the chaotic motion may occur in
the present system; otherwise the motion is periodic.

6. RESULTS AND ANALYSIS

In order to express the dynamic response of the present
system in detail, Equation (5) is rewritten in state space
form as follows

Yi=y2

. 4 Ks aAKA _ C ela

y2=a)2 ﬂSIH(wT)—My]—Td’Xy?— (20)
C a,C,
ACRRTRL

Equation (20) is studied numerically with the fourth
order Runge-Kutta algorithm provided by MATLAB. In
the computation, the fixed step size is 0.0005 and the
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Figure 5. Time history of chaotic motion for 7=0.05m,
@=8rad.
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Figure 6. System phase portrait for 7=0.05m, @=8rad.

absolute error tolerance is less than 107 The initial
conditions are set as y;=—0.01m, y,=0m. The amplitude 7
of road excitation is chosen as 0.05m and 0.015m when
frequency of road excitation is fixed for @=8 rad by
referring to Figure 4.

The dynamic responses of the present system from 0 to
800s are computed, which possess 1019 forcing cycles.
To eliminate the transient responses, only the number
points of last 250 periods are saved. The time history of
y, and phase portrait of nonlinear suspension system for
71=0.05m, @=8 rad are respectively plotted in Figure 5
and Figure 6.

The Poincaré map of system response is shown in
Figure 7. It contains 3820 sampling points. Figure 5
through Figure 7 show that the dynamic response of non-
linear suspension system is chaotic when the amplitude
and frequency of road excitation is 0.05m and 8rad,
respectively.

Figure 8 through Figure 10 are respectively the time
history of y,, phase portrait and Poincaré map of non-
linear suspension system for 7=0.015m, @=_8rad. It can
be seen that the response of the system is a periodic
motion. Chaotic motion cannot take place because the
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Figure 7. System Poincaré map for 7=0.05m, @=8rad.
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Figure 8. Time history of chaotic motion for 7=0.015m,
w=8rad.
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Figure 9. System phase portrait for 7=0.015m, @=8rad.

amplitude of road excitation is lower than the threshold
curve.

Melnikov function is a necessary condition to estimate
the chaotic threshold, and can get the constant set of
chaos for a nonlinear system. But it cannot judge if the
system must exist a strange attractor.

If the frequency of road excitation is fixed and the
amplitude of road excitation is below the threshold curve,
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Figure 10. System Poincaré map for 7=0.015m, @=8rad.
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Figure 11. Maximal Lyapunov exponent for =8rad.

the chaotic motion cannot appear in the present system.
But if that is above the curve, the response of system may
be transient chaos or disperse. Hence, in order to further
verify the chaotic motion of nonlinear suspension system,
the maximal Lyapunov exponent is also adopted in
present paper.

Lyapunov exponent governs the rate of separation with
respect to specific directions in phase space. Chaos is
associated with a positive exponent, which implies that
two orbits starting infinitesimally close to each other will
diverge exponentially.

Figure 11 shows the maximal Lyapunov exponent 4,
calculated for ax=8rad by Wolf’s algorithm (Wolf et al.,
1985) versus the amplitude 77 of road excitation, in which
all vehicle parameters are fixed except that 77 varies with
increment A77=0.0005m. When the amplitude of road
excitation 7 [0, 0.0375], the corresponding maximal
Lyapunov exponent A, is negative. It demonstrates that
chaotic motion doesn’t exist. When 77 is in the interval
[0.0375, 0.055], the corresponding positive maximal
Lyapunov exponent indicates that the chaotic motion
may occur in the nonlinear system. Because Melnikov
method is a kind of theoretic approach to study chaotic
motion, and it can only obtain the first order approxi-
mation of solution, the amplitude threshold of road
excitation is given by the maximal Lyapunov exponent
greater than that by Melnikov integrals.

7. CONCLUSION

By transforming time variable into state variable, an easy
numerical algorithm of Melnikov integrals is developed
for the nonlinear vehicle suspension. And the threshold
curve of amplitude of road excitation is obtained in the
paper. The chaotic motion may occur in the present
system when the amplitude of road excitation lies above
the threshold curve; otherwise the motion is periodic.
And the maximal Lyapunov exponent also further
verifies the conclusion. In order to eliminate the chaotic

motion in the nonlinear system, it is very necessary to
develop certain control methods in the future study.
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