
J. Appl. Math. & Informatics Vol. 31(2013), No. 1 - 2, pp. 65 - 77
Website: http://www.kcam.biz

NUMERICAL SOLUTION OF A CLASS OF THE NONLINEAR

VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

L. SAEEDI, A. TARI∗ AND S. H. MOMENI MASULEH

Abstract. In this paper, we develop the operational Tau method for solv-
ing nonlinear Volterra integro-differential equations of the second kind. The
existence and uniqueness of the problem is provided. Here, we show that
the nonlinear system resulted from the operational Tau method has a semi

triangular form, so it can be solved easily by the forward substitution
method.
Finally, the accuracy of the method is verified by presenting some numerical
computations.
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1. Introduction

Consider the nonlinear Volterra integro-differential equation (NVIDE)

Dy(x) +

∫ x

0

K(x, t, y(t))dt = f(x), x ∈ [0, b], (1)

with m initial conditions

y(i)(0) = αi, i = 0, 1, . . . ,m− 1, (2)

where m is the order of the differential operator D, f and K are given smooth
functions and K is nonlinear in y.
The field of integral and integro-differential equations is a very important sub-
ject in applied mathematics, because mathematical formulation of many physical
phenomena contains integro-differential equations. These equations also arises
in many other fields like fluid dynamics, biological models and chemical kinet-
ics [1].
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On the other hand, integro-differential equations are usually difficult to solve an-
alytically so it is required to obtain an efficient approximate solution [1]. There-
fore, the numerical solution of such equations have been highly studied by many
researchers. Khani and Shahmorad [2], used Adomian decomposition method to
solve NVIDEs of the second kind. Khani et.al. [3], proposed a method for sys-
tem of NVIDEs, in which corresponding unknown coefficients of the method are
determined using computational aspects of matrices. Darania and Ebadian [4],
developed the Taylor expansion approach for nonlinear integro-differential equa-
tions. The variational iteration method is applied for solving nonlinear integro-
differential equations by Batiha, et.al. in Ref. [1].

In the recent years, the operational Tau method has been shown to be a suc-
cessful technique, leading to reasonably simple algorithms for numerical solution
of ordinary and partial differential equations. This method was introduced by
Lanczos in 1938 and extended for getting numerical solution of ODEs by Or-
tiz [5]. In 1981, Ortiz and Samara studied the operational Tau method for solv-
ing nonlinear differential equations. The operational Tau method is employed to
solve a system of nonlinear Volterra integro-differential equations with nonlinear
differential part by Abbasbandy and Taati [6]. More recently, Bhrawy et.al [7]
developed a direct solution technique for solving multi-order fractional differen-
tial equatipns with variable coefficients using a quadrature shifted Legendre Tau
(Q-SLT) method. A Tau approach was developed for solving the space fractional
diffusion equation by Karimi and Aminataei [8]. Ghoreishi and Yazdani [9] pro-
vided an efficient numerical approach for the fractional differential equations
based on a spectral Tau method. EL-Daou [10] developed a method to solve a
class of second-order ordinary differential equations with highly oscillatory so-
lutions. Saadatmandi and Dehghan [11], presented approximation techniques
based on the shifted Legendre-Tau idea to solve a class of initial-boundary value
problems for the fractional diffusion equations with variable coefficients on a
finite domain.

In this work, the operational Tau method is developed to present the numer-
ical solution of Eq. (1). This leads to a semi lower triangular nonlinear system
of equations which can be easily solved using a forward substitution method.

The rest of this paper is organized as follows:
In Section 2, we discuss about existence and uniqueness of the solution of the
Eq. (1). In Section 3, we briefly describe Tau method for solving nonlinear
Volterra integro-differential equations and formulate the problem. In Section
4, we give some examples to show the accuracy and efficiency of the presented
method. Finally, a conclusion is given in Section 5.

2. Existence and uniqueness of the solution

In this section, the existence and uniqueness of the solution for Eq. (1) are
presented. First we give the following theorem from [12].
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Theorem 2.1. Consider the system of equations

y(t) = f(t) +

∫ x

0

K(x, t, y(t))dt. (3)

Assume that
(i) f(x) is continuous (i.e., every component is continuous),
(ii) K(x, t, y) is a continuous function for 0 ≤ x ≤ t ≤ b and −∞ ≤∥ y ∥≤ ∞,
(iii) the kernel satisfies the Lipschitz condition

∥K(x, t, y1)−K(x, t, y2)∥ ≤ L∥y1 − y2∥ (4)

wherer L is independent of x, t, y1 and y2. Then the Eq. (3) has a unique con-
tinuous solution in 0 ≤ x ≤ b.

Now we consider some cases of the integro-differential equations and investi-
gate existence and uniqueness of the solutions of them.

Corollary 2.2. Consider the equations of the form

y′(x) = f(x) +

∫ x

0

K (x, t, y(t)) dt, (5)

with initial condition y(0) = α where f and K are continuous functions and K
satisfies the Lipschitz condition

|| K(x, t, y1)−K(x, t, y2) ||≤ L1 || y1 − y2 || . (6)

Then this problem has a unique continuous solution.

Proof. Replacing x by s in (5), leads to

y′(s) = f(s) +

∫ s

0

K (s, t, y(t)) dt (7)

by integrating from (7) and using y(0) = α, we obtain

y(x) = α+

∫ x

0

f(s)ds+

∫ x

0

∫ s

0

K (s, t, y(t)) dtds,

or

y(x) = α+

∫ x

0

(
f(s) +

∫ s

0

K(s, t, y(t))dt

)
ds.

Assuming H(s, y(s)) = f(s) +
∫ s

0
K(s, t, y(t))dt, gives

y(x) = α+

∫ x

0

H(s, y(s))ds (8)

which is in the form of Eq. (3), where obviously α and H(s, y(s)) are continuous.
Therefore, for the existence and uniqueness of a continuous solution of the Eq. (5)
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it is sufficient to show that Eq. (8) satisfies the Lipschitz condition. To this end,
we have

|| H(s, y1(s))−H(s, y2(s)) || =
∥∥∥∥∫ s

0

(K(s, t, y1(t))−K(s, t, y2(t))) dt

∥∥∥∥
≤

∫ s

0

|| K(s, t, y1(t))−K(s, t, y2(t)) || dt

≤ L1 || y1 − y2 ||
∫ s

0

dt

≤ L1b || y1 − y2 || .

So by Theorem 2.1, the Eq. (5) has a unique continuous solution. �

Corollary 2.3. If in the equation

y′(x) + cy(x) = f(x) +

∫ x

0

K(x, t, y(t))dt, (9)

with initial condition y(0) = α, the functions f and K are continuous and K
satisfies the Lipschitz condition (6), then the equation (9) with given condition
has a unique continuous solution.

Proof. Similar to corollary 2.2, replacing x by s in (9), leads to

y′(s) = f(s)− cy(s) +

∫ s

0

K(s, t, y(t))dt, (10)

by integrating from (10) and using y(0) = α, we obtain

y(x) = α+

∫ x

0

f(s)ds− c

∫ x

0

y(s)ds+

∫ x

0

(∫ s

0

K(s, t, y(t))dt

)
ds.

Therefore,

y(x) = α+

∫ x

0

{
f(s)− cy(s) +

∫ s

0

K(s, t, y(t))dt

}
ds

and by setting H(s, y(s)) = f(s)− cy(s) +
∫ s

0
K(s, t, y(t))dt, similar to the pre-

vious corollary we only investigate the Lipschitz condition. To this end, we
have

∥H(s, y1)−H(s, y2)∥ =

∥∥∥∥c [y2(s)− y1(s)] +

∫ s

0

[K(s, t, y1(t)−K(s, t, y2(t)] dt

∥∥∥∥
≤| c | ∥y1 − y2∥+

∫ s

0

L1∥y1 − y2∥dt

≤ (| c | +bL1)∥y1 − y2∥.

Again, by Theorem 2.1, Eq. (9) has a unique continuous solution. �

In the following corollary we consider the NVIDEs of the second order.
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Corollary 2.4. Assume in the equation

y′′(x) + c1y
′(x) + c2y(x) = f(x) +

∫ x

0

K(x, t, y(t))dt, (11)

with initial conditions y(0) = α, y′(0) = β, the functions f and K are continu-
ous functions and K satisfies the Lipschitz condition (6). Then the mentioned
problem has a unique continuous solution.

Proof. With the same manner, replacing x by s in (11), gives

y′′(s) + c1y
′(s) + c2y(s) = f(s) +

∫ s

0

K(s, t, y(t))dt. (12)

By two times integrating from (12) and using conditions y(0) = α, y′(0) = β,
we have

y(z) = α+ (β − c1α)z +

∫ z

0

{
−c1y(x) +

∫ x

0

(
f(s)− c2y(s) +

∫ s

0
K(s, t, y(s))dt

)
ds

}
dx.

If we put

H(x, y(x)) = −c1y(x) +

∫ x

0

(
f(s)− c2y(s) +

∫ s

0

K(s, t, y(s))dt

)
ds,

then we obtain

∥H(x, y1(x))−H(x, y2(x))∥

=

∥∥∥∥c1(y2(x)− y1(x)) +

∫ x

0

(
c2(y2(s)− y1(s)) +

∫ s

0
(K(s, t, y1(s)−K(s, t, y2(t)) dt

)
ds

∥∥∥∥
≤| c1 | .∥y1 − y2∥+ b | c2 | .∥y1 − y2∥+

∫ x

0

∫ s

0
L1∥y1 − y2∥dtds

≤
(
| c1 | +b | c2 | +b2L1

)
∥y1 − y2∥.

Similar to previous cases, by Theorem 2.1 Eq. (11) has a unique continuous
solution. �

The same conclusion can be drawn for the differential operator D in Eq. (1).
For example we can consider the equation

y(n)(x) = f(x) +

∫ x

0

k(x, t, y(t))dt

with conditions y(i)(0) = αi, i = 0, 1, . . . , n − 1, and similar to the previous
corollaries we can convert this problem to an equation of the form (1).

3. Formulation of the problem

Assume that the differential operator D in the NVIDE (1) has the following
form

D :=

m∑
r=0

pr(x)
dr

dxr
, pr(x) =

dr∑
j=0

prjx
j = prX, (13)
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where dr is degree of pr(x), pr = (pr0 , pr1 , . . . , prdr , 0, 0, . . .) and X = (1, x, x2, . . .)T .
To introduce the operational Tau method, we need to define the following basic
matrices [13]

µ =


0 1 0 0 . . .
0 0 1 0 . . .

0 0 0 1 . . .
..
.

..

.
..
.

..

.
. . .

 , η =


0 0 0 0 . . .
1 0 0 0 . . .
0 2 0 0 . . .

0 0 3 0 . . .
..
.

..

.
..
.

..

.
. . .

 , ι =



0 1 0 0 . . .

0 0
1

2
0 . . .

0 0 0
1

3
. . .

.

..
.
..

.

..
.
..

. . .

 ,

which have interesting properties, as outlined below:
If y(x) = aX, where a = (a0, a1, . . . , an, 0, . . . , 0), X = (1, x, x2, . . .)T , then

d

dx
y(x) = aηX, (14)

xy(x) = aµX, (15)∫ x

0

y(x)dx = aιX. (16)

To represent the differential part of the Eq. (1) in the matrix form, we need the
following Theorem [14].

Theorem 3.1. For any linear differential operator D defined by (13), we have

Dy(x) = aΠDX, (17)

where

ΠD =

m∑
i=0

ηipi(µ). (18)

To represent the initial conditions in matrix form, we introduce the vector
α = (α0, α1, . . . , αm−1, 0, . . .) and the diagonal matrix S = (sii) such that sii =
y(i)(0) for i = 0, 1, . . . ,m− 1. Then, the initial conditions (2) take the following
form

aS = α. (19)

To represent the integral part of the Eq. (1) in matrix form, one needs the
following lemma and theorem [15].

Lemma 3.2. Let

y(x) =
∞∑
i=0

aix
i = aX

be a polynomial where X = [1, x, x2, . . .]T is a standard basis vector and a =
[a0, a1, a2, . . .], then for any p ∈ N , we have

yp(x) = aBp−1X,

where B is an infinite upper triangular Toeplitz matrix having the following
structure
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B =


a0 a1 a2 . . .
0 a0 a1 . . .
0 0 a0 . . .
...

...
...

. . .

 .

Theorem 3.3. Suppose that the analytic functions y(x) and k(x, t) can be ex-
pressed as:

y(x) =
∞∑
i=0

aix
i = aX, K(x, t) =

∞∑
i=0

∞∑
j=0

ki,jx
itj .

Then we have ∫ x

0

K(x, t)yp(t)dt = aBp−1MX,

where

M =



0 k0,0 k0,1 +
1

2
k1,0 k0,2 +

1

2
k1,1 +

1

3
k2,0 . . .

0 0
1

2
k0,0

1

2
k0,1 +

1

3
k1,0 . . .

0 0 0
1

3
k0,0 . . .

...
...

...
... . . .

0 0 . . . 0
1

n
k0,0

0 0 . . . 0 0


.

Now, we apply the previous results for constructing the operational Tau ap-
proximate solution of Eq. (1).
The right hand side of Eq. (1) can be written as

f(x) =
∞∑
i=0

fix
i = fX, (20)

where f = [f0, f1, . . .].
Using the given relations in theorems 3.1 and 3.3 and Eq. (20), Eq. (1) can be
transformed to the following matrix form:

aΠDX+ aBp−1MX = fX,

which can be written as

a(ΠD +Bp−1M)X = fX.

Therefore, we have

a
(
ΠD +Bp−1M

)
= f , (21)

which is matrix representation of Eq. (1). It is clear that, the Tau matrix
representation for the problem is a semi lower triangular nonlinear system of
equations, which can be solved using a forward substitution method.



72 L. Saeedi, A. Tari and S. H. Momeni Masuleh

Let Π stand for the collected matrix ΠD +Bp−1M and πi for the i-th column
of Π. Then the coefficient vector a which is the exact solution of y = aX for
problem (1) and (2), satisfies the following infinite algebraic system of equations

aSj = αj , j = 0, 1, . . . ,m− 1,

aπi = fi, i = 0, 1, . . . , df ,

aπi = 0, i ≥ df + 1,

(22)

where Sj is the j-th column vector of matrix S. Let us to introduce G =
(S1, S2, . . . , Sm, π0, π1, . . .) and δ = (α, f, 0, 0, . . .). Then the infinite algebraic
system of equations (22) can be written as

aG = δ. (23)

Definition 3.1. Let Gn is the matrix including the first n+1 rows and columns
of G and δn is a vector containing the first n+ 1 elements of δ. Then an is the
solution of the algebraic system of equations

anGn = δn, (24)

where an = [a0, a1, . . . , an] and Xn = [1, x, x2, . . . , xn]T . The polynomial yn =
anXn is called an operational Tau approximate solution of Eq. (23).

Remark 3.1. Since the matrix B contains unknowns a0, a1, . . . , an, Eq. (21)
and so Eq. (24) are nonlinear in a = [a0, a1, . . . , an].

Remark 3.2. Since the presented method leads to a semi lower triangular non-
linear system of equations, can choose n arbitrary large to obtain the solution
yn with the desired accuracy and easily can be solved.

4. Numerical examples

To elucidate this presentation and test the accuracy of the presented method
some example are investigated.

Example 1. Consider the following NVIDE [16]:

y′(x) +

∫ x

0

3 cos(x− t)y2(t)dt = 2 sin(x) cos(x), x ∈ [0, 1], (25)

with the initial condition y(0) = 1 whose exact solution is y(x) = cos(x).
By applying the operational Tau method (OTM) to this example one may obtain
the following nonlinear system of equations

a0 =1, a1 = 0, a2 =
−3a0
2

+ 1, a3 = −a1
2
, a4 = −a0

8
− a2

4
− 1

3
+

3a20
8

a5 =− a1
8

− 3a3
20

+
3a0a1
10

, a6 =
3a0
80

− 11a2
120

− a4
10

+
2

45
+

a21
20

+
7a2a0
40

− 3a30
80

,

a7 =
3a1
112

− 19a3
280

− a5
14

− 27a1a
2
0

560
+

3a0a1
280

+
3a1a2
56

+
33a3a0
280

,
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a8 =− 41a0
13440

+
131a2
6720

− 29a4
560

− 3a6
56

− 1

315
+

3a4a0
35

+
13a21
2240

+
39a1a3
1120

+
19a2a0
2240

− 3a0a
2
1

160
+

3a30
4480

+
3a22
224

− 33a2a
2
0

1120
− 9a20

4480
+

9a40
4480

,

...

Thus

a =

[
1, 0,−1

2
, 0,

1

24
, 0,− 1

720
, 0,

1

40320
, . . .

]
=

[
1, 0,− 1

2!
, 0,

1

4!
, 0,− 1

6!
, 0,

1

8!
, . . .

]
and the polynomial solution is

yn(x) = 1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 +

1

8!
x8 + . . .

which is exactly as accurate as the analytical solution. Computational results
in Table 1 show that high accuracy is achieved for n = 8 in comparison to the
absolute error in Ref. [16].

Table 1. Computational results of Example 1 for different n
at some nodes.

n 8 10 12 8
x Error (OTM) Error [16]
0.0 0.000000 0.000000 0.000000 0.0000
0.1 0.275552e-16 0.208756e-20 0.114703e-24 0.1167e-2
0.2 0.282101e-13 0.854924e-17 0.187905e-20 0.1571e-2
0.3 0.162612e-11 0.110893e-14 0.548436e-18 0.1231e-2
0.4 0.288609e-10 0.349946e-13 0.307710e-16 0.22e-3
0.5 0.268605e-9 0.508987e-12 0.699390e-15 0.1338e-2
0.6 0.166175e-8 0.453544e-11 0.897548e-14 0.734e-3
0.7 0.775544e-8 0.288185e-10 0.776387e-13 0.766e-3
0.8 0.294465e-7 0.142961e-9 0.503146e-12 0.1302e-2
0.9 0.954994e-7 0.587006e-9 0.261530e-11 0.2176e-2
1.0 0.273497e-6 0.207625e-8 0.114231e-10 0.3189e-2

Example 2. As the second example consider the following NVIDE [17]:

y′(x) = −2 sin(x)− 1

3
cos(x)− 2

3
cos(2x) +

∫ x

0

cos(x− t)y2(t)dt (26)

for x ∈ [0, 1] with the initial condition y(0) = 1, which has the exact solution
y(x) = cos(x)−sin(x). Using OTM, we obtain the following semi lower triangular
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nonlinear system of equations

a0 = 1, a1 = −1, a2 =
a0
2

− 1, a3 =
a1
6

− a0
6

+
1

2
,

a4 = −a0
8

+
a2
12

− a1
12

+
1

12
+

a20
24

,

a5 = −7a1
120

+
a3
20

+
a0
30

− a2
20

− 11

120
+

a1a0
30

− a20
120

,

...

Thus

a =

[
1,−1,−1

2
,
1

6
,
1

24
,− 1

120
, . . .

]
=

[
1,−1,− 1

2!
,
1

3!
,
1

41
,− 1

5!
, . . .

]
and the solution can be present as

yn =

(
1− 1

2!
x2 +

1

4!
x4 − . . .

)
−
(
x− 1

3!
x3 +

1

5!
x5 − . . .

)
,

which is exactly what we should expect. Table 2 shows a comparison between
the OTM and the approximate solution that is given in Ref. [17] for n = 8.

Table 2. Computational results of Example 2 for different n
at some nodes.

n 8 10 12 8
x Error (OTM) Error [17]
0.0 0.000000 0.000000 0.000000 0.10e-5
0.1 0.278304e-14 0.252592e-18 0.161730e-22 0.16e-4
0.2 0.143863e-11 0.521485e-15 0.133410e-18 0.26e-3
0.3 0.558228e-10 0.454624e-13 0.261408e-16 0.84e-4
0.4 0.750210e-9 0.108468e-11 0.110765e-14 0.94e-3
0.5 0.563868e-8 0.127219e-10 0.202794e-13 0.12e-4
0.6 0.293425e-7 0.952144e-10 0.218359e-12 0.28e-3
0.7 0.118465e-6 0.522628e-9 0.162996e-11 0.47e-4
0.8 0.397171e-6 0.228612e-8 0.930486e-11 0.11e-4
0.9 0.115530e-5 0.840796e-8 0.432782e-10 0.78e-4
1.0 0.300434e-5 0.269685e-7 0.171252e-9 0.81e-3

Example 3. Consider the following NVIDE [18]:

y′(x) = −1 +

∫ x

0

y2(t)dt, x ∈ [0, 1] (27)
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with the initial condition y(0) = 0. Using OTM, we obtain the following non-
linear system of equations

a0 = 0, a1 = −1, a2 = 0, a3 = −a0
6
,

a4 = −a1
12

, a5 = −a2
20

− a20
120

, a6 = −a3
30

− a1a0
120

,

...

Thus

a = [0,−1, 0, 0,
1

12
, 0, 0, . . .].

Table 3. Computational results of Example 3 for different n
at some nodes.

n 12 15 15
x Exact solution OTM OTM WGM

0.0000 0.00000 0.000000 0.000000 0.0000
0.0625 -0.06250 -0.062499 -0.062499 -0.0625
0.1250 -0.12498 -0.124980 -0.124980 -0.1250
0.1875 -0.18740 -0.187397 -0.187397 -0.1874
0.2500 -0.24967 -0.249675 -0.249675 -0.2497
0.3125 -0.31171 -0.311706 -0.311706 -0.3117
0.3750 -0.37336 -0.373356 -0.373356 -0.3734
0.4375 -0.43446 -0.434459 -0.434459 -0.4345
0.5000 -0.49482 -0.494822 -0.494822 -04948
0.5625 -0.55423 -0.554227 -0.554227 -0.5542
0.6250 -0.61243 -0.612431 -0.612431 -0.6124
0.6875 -0.66917 -0.669167 -0.669167 -0.6692
0.7500 -0.72415 -0.724153 -0.724153 -0.7242
0.8125 -0.77709 -0.777090 -0.777090 -0.7771
0.8750 -0.82767 -0.827666 -0.827667 -0.8277
0.9375 -0.87557 -0.875566 -0.875569 -0.8756
1.0000 -0.92048 -0.920469 -0.920476 -0.9205

Avudainayagam and Vani [18] solved this problem using Wavelet-Galerkin
method (WGM) by n = 15. Table 3 contains a numerical comparison between
OTM and the solution of (VGM).
The reported results of the proposed method and WGM for n = 15 show that
both methods have produced nearly equivalent approximate solutions.

5. Conclusion

In this paper, we obtained an interesting form for the operational Tau repre-
sentation of the NVIDEs with initial conditions. It was shown that, the NVIDEs
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with initial conditions can be converted to a semi lower triangular nonlinear sys-
tem which has an important advantage that we can solve the problem with a
desired accuracy. The numerical examples shown this truth.
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