• 제목/요약/키워드: nonlinear least squares regression

검색결과 59건 처리시간 0.023초

Asymmetric Least Squares Estimation for A Nonlinear Time Series Regression Model

  • Kim, Tae Soo;Kim, Hae Kyoung;Yoon, Jin Hee
    • Communications for Statistical Applications and Methods
    • /
    • 제8권3호
    • /
    • pp.633-641
    • /
    • 2001
  • The least squares method is usually applied when estimating the parameters in the regression models. However the least square estimator is not very efficient when the distribution of the error is skewed. In this paper, we propose the asymmetric least square estimator for a particular nonlinear time series regression model, and give the simple and practical sufficient conditions for the strong consistency of the estimators.

  • PDF

NONLINEAR ASYMMETRIC LEAST SQUARES ESTIMATORS

  • Park, Seung-Hoe;Kim, Hae-Kyung;Lee, Young
    • Journal of the Korean Statistical Society
    • /
    • 제32권1호
    • /
    • pp.47-64
    • /
    • 2003
  • In this paper, we consider the asymptotic properties of asymmetric least squares estimators for nonlinear regression models. This paper provides sufficient conditions for strong consistency and asymptotic normality of the proposed estimators and derives asymptotic relative efficiency of the pro-posed estimators to the regression quantile estimators. We give some examples and results of a Monte Carlo simulation to compare the asymmetric least squares estimators with the regression quantile estimators.

Asymmetric least squares regression estimation using weighted least squares support vector machine

  • Hwan, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권5호
    • /
    • pp.999-1005
    • /
    • 2011
  • This paper proposes a weighted least squares support vector machine for asymmetric least squares regression. This method achieves nonlinear prediction power, while making no assumption on the underlying probability distributions. The cross validation function is introduced to choose optimal hyperparameters in the procedure. Experimental results are then presented which indicate the performance of the proposed model.

THE STRONG CONSISTENCY OF THE ASYMMETRIC LEAST SQUARES ESTIMATORS IN NONLINEAR CENSORED REGRESSION MODELS

  • Choi, Seung-Hoe;Kim, Hae-Kyung
    • 대한수학회논문집
    • /
    • 제18권4호
    • /
    • pp.703-712
    • /
    • 2003
  • This paper deals with the strong consistency of the asymmetric least squares for the nonlinear censored regression models which includes dependent variables cut off midway by any of external conditions, and provide the sufficient conditions which ensure the strong consistency of proposed estimators of the censored regression models. One example is given to illustrate the application of the main result.

The Strong Consistency of Nonlinear Least Squares Estimators

  • Kim, Hae-Kyung
    • Journal of the Korean Statistical Society
    • /
    • 제18권2호
    • /
    • pp.85-96
    • /
    • 1989
  • This paper is concerned with the strong consistency of the least squares estimators for the nonlinear regression models. A simple and practical sufficient condition for the strong consistency of the least squares estimators is given. It is also discussed that the extension of the strong consistency to a wide class of regression functions can be established by imposing some condition on the input values. Some examples are given to illustrate the application of main result.

  • PDF

Fuzzy c-Regression Using Weighted LS-SVM

  • Hwang, Chang-Ha
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2005년도 추계학술대회
    • /
    • pp.161-169
    • /
    • 2005
  • In this paper we propose a fuzzy c-regression model based on weighted least squares support vector machine(LS-SVM), which can be used to detect outliers in the switching regression model while preserving simultaneous yielding the estimates of outputs together with a fuzzy c-partitions of data. It can be applied to the nonlinear regression which does not have an explicit form of the regression function. We illustrate the new algorithm with examples which indicate how it can be used to detect outliers and fit the mixed data to the nonlinear regression models.

  • PDF

Hybrid Fuzzy Least Squares Support Vector Machine Regression for Crisp Input and Fuzzy Output

  • Shim, Joo-Yong;Seok, Kyung-Ha;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • 제17권2호
    • /
    • pp.141-151
    • /
    • 2010
  • Hybrid fuzzy regression analysis is used for integrating randomness and fuzziness into a regression model. Least squares support vector machine(LS-SVM) has been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a new method to evaluate hybrid fuzzy linear and nonlinear regression models with crisp inputs and fuzzy output using weighted fuzzy arithmetic(WFA) and LS-SVM. LS-SVM allows us to perform fuzzy nonlinear regression analysis by constructing a fuzzy linear regression function in a high dimensional feature space. The proposed method is not computationally expensive since its solution is obtained from a simple linear equation system. In particular, this method is a very attractive approach to modeling nonlinear data, and is nonparametric method in the sense that we do not have to assume the underlying model function for fuzzy nonlinear regression model with crisp inputs and fuzzy output. Experimental results are then presented which indicate the performance of this method.

The Influence of Assay Error Weight on Gentamicin Pharmacokinetics Using the Bayesian and Nonlinear Least Square Regression Analysis in Appendicitis Patients

  • Jin, Pil-Burm
    • Archives of Pharmacal Research
    • /
    • 제28권5호
    • /
    • pp.598-603
    • /
    • 2005
  • The purpose of this study was to determine the influence of weight with gentamicin assay error on the Bayesian and nonlinear least squares regression analysis in 12 Korean appen dicitis patients. Gentamicin was administered intravenously over 0.5 h every 8 h. Three specimens were collected at 48 h after the first dose from all patients at the following times, just before regularly scheduled infusion, at 0.5 h and 2 h after the end of 0.5 h infusion. Serum gentamicin levels were analyzed by fluorescence polarization immunoassay technique with TDxFLx. The standard deviation (SD) of the assay over its working range had been determined at the serum gentamicin concentrations of 0, 2, 4, 8, 12, and 16 ${\mu}g$/mL in quadruplicate. The polynominal equation of gentamicin assay error was found to be SD (${\mu}g$/mL) = 0.0246-(0.0495C)+ (0.00203C$^2$). There were differences in the influence of weight with gentamicin assay error on pharmacokinetic parameters of gentamicin using the nonlinear least squares regression analysis but there were no differences on the Bayesian analysis. This polynominal equation can be used to improve the precision of fitting of pharmacokinetic models to optimize the process of model simulation both for population and for individualized pharmacokinetic models. The result would be improved dosage regimens and better, safer care of patients receiving gentamicin.

ROBUST TEST BASED ON NONLINEAR REGRESSION QUANTILE ESTIMATORS

  • CHOI, SEUNG-HOE;KIM, KYUNG-JOONG;LEE, MYUNG-SOOK
    • 대한수학회논문집
    • /
    • 제20권1호
    • /
    • pp.145-159
    • /
    • 2005
  • In this paper we consider the problem of testing statistical hypotheses for unknown parameters in nonlinear regression models and propose three asymptotically equivalent tests based on regression quantiles estimators, which are Wald test, Lagrange Multiplier test and Likelihood Ratio test. We also derive the asymptotic distributions of the three test statistics both under the null hypotheses and under a sequence of local alternatives and verify that the asymptotic relative efficiency of the proposed test statistics with classical test based on least squares depends on the error distributions of the regression models. We give some examples to illustrate that the test based on the regression quantiles estimators performs better than the test based on the least squares estimators of the least absolute deviation estimators when the disturbance has asymmetric and heavy-tailed distribution.

Nonlinear Regression Quantile Estimators

  • Park, Seung-Hoe;Kim, Hae kyung;Park, Kyung-Ok
    • Journal of the Korean Statistical Society
    • /
    • 제30권4호
    • /
    • pp.551-561
    • /
    • 2001
  • This paper deals with the asymptotic properties for statistical inferences of the parameters in nonlinear regression models. As an optimal criterion for robust estimators of the regression parameters, the regression quantile method is proposed. This paper defines the regression quintile estimators in the nonlinear models and provides simple and practical sufficient conditions for the asymptotic normality of the proposed estimators when the parameter space is compact. The efficiency of the proposed estimator is especially well compared with least squares estimator, least absolute deviation estimator under asymmetric error distribution.

  • PDF