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Nonlinear Regression Quantile Estimators
Seung Hoe Choi! Hae kyung Kim? and Kyung Ok Park®

ABSTRACT

This paper deals with the asymptotic properties for statistical inferences
of the parameters in nonlinear regression models. As an optimal criterion
for robust estimators of the regression parameters, the regression quantile
method is proposed. This paper defines the regression quantile estimators in
the nonlinear models and provides simple and practical sufficient conditions
for the asymptotic normality of the proposed estimators when the parameter
space is compact. The efficiency of the proposed estimator is especially well
compared with least squares estimator, least absolute deviation estimator
under asymmetric error distribution.

Keywords: Nonlinear Regression Quantiles Estimators, Consistency, Normality,
Efficiency.

1. Introduction
The general nonlinear regression model is
ye = f(24,00) +e, t=1,---,n (1.1)

where z; € A is a vector of explanatory variable of dimension ¢, the true pa-
rameter 8, € RP is an unknown regression parameter to be estimated, and
f: RP*9 Rl is a continuous function of z and §. We will assume throughout
that €; are independent and identically distributed (i.i.d.) random variables with
finite variance.

The method of Least Square (LS), developed by Jennrich (1969) and Wu
(1981) is one of the most commonly used methods for estimating the regression
coefficients in model (1.1). But the extreme sensitivity of the LS estimation to
modest amounts of outlier contamination makes it a very poor estimator in many
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non-Gaussian, especially long-tailed, situations. To overcome the lack of the LS
estimation, there has been an increased interest in robust estimation procedures
applied to the regression model.

The Least Absolute Deviation (LAD) estimators based on sample median is
defined by any vector minimizing the sum of absolute deviations

Dy, (9 Z |yt

where f:(0) = f(z:,0). Oberhofer(1982) and Wang(1995) gave sufficient condi-
tions for the weak consistency and asymptotic normality of the LAD estimators
in nonlinear regression models. Kim and Choi(1995) investigated the asymptotic
properties of the nonlinear LAD estimators and explained that the relative ef-
ficiency of the LAD estimators to the LS estimators is the same as the relative
efficiency of the sample median to the sample mean. The condition G(0) = }
is one of sufficient conditions which ensure optimal properties for the LAD esti-
mators. But it is not easy to select response function f(z,8) in order to equal
the ratio of the number of {t : y; > f(x:,0)} to the number of{t : y; < f(z,0)}-
Hence in case of a distribution function of errors is positively skewed (or negatively
skewed) other quantiles than median(50th quantile) may reveal the information
about the unknown parameter 8, in model (1.1). Regression quantiles which
provide a natural generalization of the notion of sample quantile to the general
regression model were proposed by Koenker and Basset(1978).

The S-th regression quantiles estimators (0 < 8 < 1) of the true parameter 9,
based on (y;, z;), denoted by 6y, (B), is a parameter which minimizes the objective
function

B)= =3 wslu — £(6)), (12)
t=1

where the “check” function

[ B if A >0,
‘p"(’\)“{ (B-1A  ifA<0.

Since the check function ¢g(z) rotates the absolute function %l by some angle
¢ in the clockwise direction (8 < %), the LAD estimators is easily seen to be a
special case; S, (0; ) 2Qn( ) as defined above. In some recent papers, analysis
of linear models using quantiles estimation has been published by many authors
: Basset and Koenker(1982, 1986), Powell(1986) and Portnoy(1991). Basset and
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Koenker(1986) established the strong consistency of regression quantiles statistics
in linear models with i.i.d. errors. Powell(1986) investigated asymptotic proper-
ties of proposed estimators in censored regression model. Portnoy(1991) discussed
asymptotic behavior of regression quantiles under more general heteroscedasticity
and dependence assumptions in linear models.

The main purpose of this paper is to provide sufficient conditions for the
asymptotic properties of the regression quantile estimators in the nonlinear re-
gression model (1.1). For this, we establish the strong consistency of nonlinear
regression quantile estimators 6, under the some mild conditions in section 2.
In section 3, we prove the asymptotic normality of using smooth function ap-
proximate to the absolute value function. Finally, we propose confidence region
based on the estimators and discuss desirable asymptotic properties including the
asymptotic relative efficiency of the test procedure in section 4.

2. Strong Consistency

Let (X,Q, P) be a probability space on R? and H denote the distribution
function of input vector z;. Let Vf;(8) = [%f(mt,G)](pxl). We make the fol-
lowing assumptions in order to guarantee the existence of a sequence of strongly
consistent estimators of 8,(3) for a particular value of 8 of the true parameter.

Assumption A
A; : The parameter space ©(3) is a compact subspace of RP.
Ay : Vfi(6) are continuous on X x ©(3).
As : P{x € Q: f(z,0,) # f(z,8)} > 0 for each 8 # 6,.
Assumption B
B, : The distribution function G(z) of the errors is continuously differen
-tiable with density g(z) which is strictly positive at G™1(8) = 0.

Modifying (1.2), we have another objective function of the nonlinear regression
quantiles estimators

Qn(g;ﬁ) = Snw;ﬂ) - Sn(00§ﬂ)- (2-1)

Since S,(0,;8) is independent of @, the regression quantiles estimators 9n(ﬁ)
defined in (1.2) is equivalent to the minimizer of (2.1). The following theorem is
the main result of this section, which provides sufficient conditions for the strong
consistency of regression quantiles estimators.
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Theorem 2.1. For the model (1.1), suppose that Assumptions A and B are ful-
filled. Then the regression quantiles estimators 0n(B) defined in (1.2) is strongly
consistent for 0,.

Proof: For any d > 0, it is sufficient to show that

0 .
lm it (Qu6:8) >0 ae. 22)

The detailed pfoof of this theorem is given in appendix. O

3. Asymptotic Normality

In this section, we study the asymptotic behavior of nonlinear regression
quantile estimators under some mild conditions. The main idea is to approximate
to the function ¢g(z) by a smooth function hy(z). As such function we use

3 1

4

where n? = o(a), o = o(n), and nl"zt‘S = o(ay) for some 6 > 0. The se-
quence o, = n—l,, such that % < p < 1 satisfies above conditions. Let S} (6;8) =

LSt 1 hn(r4(6)) which is close to S,(8;8) defined in (1.2) for sufficiently large
n and 6,(8) denote a minimizer of S}, (6; 8). By simple calculation we obtain

3

VSi(6;8) = %; [—ha(r(8))V ££(6)],
and
v2Si(0;6) = - é{hﬁi (re(8) V1OV £(6) - Ky(re(0) V2£:(6)],
where V2f,(6) = [m;ft( )] il We will require the following additional
assumption.

Assumption C
C1: Valbo) = 2 01 V£:(0,)VT f.(6,) converges to a positive definite ma
-trix V(6,) as n — oo.
The following theorem is the main result of this section, which present asymp-
totic normality of proposed estimation 6, (B).
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Theorem 3.1. If Assumptions A, B and C hold for the model (1.1), then NCRE)
—8,) converges in distribution to a p-variate normal random vector with mean

. Bl — - :
zero and variance-covariance matric MV 1(8,). That is,

[9(0)]2
B(1—pB)
[9(0))?
where g(0) is the height of the density of the error ¢; at zero.

Proof: The proof can be briefly described as follows.

(i) sup n{S;(6;8) — Sn(6;8)} = 0p(1),
6€0(8)

VR(Bn(8) — 85) 5 Ny 0, V=1(6,)),

(i) VA — ) = 0p(1),
~ 1- _
(i) v/A(Ga(8) - 80) 5 Ny(0, -"—[(mflv 1(6,)).

The detailed proof of this result, as well as the proof for Theorem 2.1 are given
in appendix. O

To see that the assumptions of the previous theorem are sufficiently to cover
a class of nonlinear regression functions, we consider the following nonlinear re-
gression models with compact parameter space.

Example 1 Consider the exponential model y; = f(x¢,0,) + €, with the
regression function f(z,0) = 0%,z # 0 where § = (61,65) € © = [0,a] x
[0,8] a,b < co. Then V,,(8) = 1 3°F | V£,(8)VT £,(8) converges to

V(o) = [e¥2dG(z) [ 61e% dG(z)
| [61€%2dG(z) [(6:1€%2)% dG(z)

For a non-zero vector a = (aj, a3)
aV(8)aT = / (01 + 6102)%¢%2 dG(z) > 0

where (6;,62) € ©°. Suppose that ¢; are i.i.d. random variables with the distribu-
tion function G for which G(0) = 5 and probability density function(p.d.f.) g(z)
is continuous. It is easy to check that Assumptions A and B are satisfied. Thus
we can guarantee the strong consistency asymptotic normality of the regression
quantile estimators.
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4. Asymptotic Relative Efficiency

In this section, we will consider asymptotic confidence region for the parame-
ter 8, in the model (1.1), and test procedure for the hypothesis about 6, based on
the asymptotic normality of the regression quantile estimators. The Asymptotic
Relative Efficiency(ARE) of two estimators having asymptotic normality, com-
paring the volumes of the corresponding confidence ellipsoids will be considered.

The asymptotic normality of v/72(6(8) — 6,), derived in theorem 3.1, implies
that R,(f,) has asymptotically a central chi-square distribution with p degrees
of freedom, where

Rn(8n) = n(0n — 00)" (9(0))*(8 — ) ™' Va(6n) (b — ),
and V,,(8,) is the p x p matrix with (3, )-th element

% i aft(én) aft(én)

20; 09,

t=1

Define C1_q(fr) as the set of 6 such that
R _ A a 1
(on - o)T(g(O))Z(IB - ﬂz) 1Vn(9n)(9n - 0) < ;L'ngy(a)y

where xf,(a) is (1 — a)th quantile of the chi-square distribution.
On the other hand, it is well known that under certain conditions, the sequence
of the least squares(LS) estimators 6,, has asymptotically a normal distribution

in the sense that
Vi(fn — 80) 5 Np(0,52V1(6,)),

where o2 is the common variance of errors in the model (1.1). See Wu(1981).
Thus, a 100(1 —a) percent confidence region based on the LS estimators, denoted
by Ci—a(fy), is the set of 8 such that

(G — 0)T o2V (6,) (6 — 6) < %Xg(a).

Hence the corresponding confidence ellipsoids C}_4(6,) and C1_q(6y) have asymp
totic confidence coefficient 1—a. To evaluate the ARE of two proposed estimators,
we consider the ratio of the volumes of the corresponding confidence ellipsoids.
See Serfling (1985) for further details. We reach the next conclusion.
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Theorem 4.1. Under the same conditions of the Theorem 3.1, the ARE of 6,
[9(0)]%0*
B(1 - B)

This result implies that the regression quantile estimators has the strictly
smaller asymptotic confidence region than in LS estimators. In particular, under
asymmetric error distribution, quantiles than median may reveal the information
about unknown parameter 6, in the model (1.1). Thus, the above result im-
plies that the regression quantile estimators is relatively more efficient than LS
estimators in the nonlinear regression model.

with respect to én 18

5. Appendix

Proof of theorem 2.1
First, we prove that

Qn(6; 8) — E{Qn(8;8)} = 0,(1), (4.1)

where 0,(1) denotes convergence in probability. For this, define the random
variable Z;(9) as following

0 otherwise.

Then we can rewrite

Qn(6;8) Ly 1lps(ri(6)) — wa(er)]
1 n Lt=1l(B = D(re(0) I, 0)<0) — €tL(e,<0})
+B(re(0)1(r,6)>0) — €tl(e,>0))]

= LYV (B~ Zu(8)re(8) + (Z:(80) — B)ed),

where 7¢(0) = y; — f1(0). Let X; = (8 — Z:(0))r:(0) + (Z:(6p) — B)es. According
to Holder’s inequality in Serfling(1985), we get

1Xel < (8 + 2)lel + 18+ 1{[VFON6 - o],

where||.|| denote Euclidian norm and 8 = A\, + (1 — 1)8,0 < A < 1. On the other
hand, Chebyshev’s inequality gives

max VarX;

P{IQu(6,8) — B{Qa(6,8)}] > ¢} < ==2

ne
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(A.1) follows from Assumption A.
Next, in virtue of (A.1) we have

Qn(6:0) = = 3" X+ 0p(1),
t=1

where E, denotes the expected value of the error term ¢;. Let Q(0;3) = nli)m % S
oo

E.X;: and N,(6,) = {6 : ||0 — 6,|| < 7}. Since R(#) = N£(6,) N O is compact,

there exists 8* such that

Q6% 8) = inf )Q(ﬁ :B).

geR(0
Note that
Q:8) = lim 1, [ f2 6 AGO) +di(6)G(d(6)) — Biu(6)]
= lmiyp, iy (2 — di(8)) dG(N).

If d;(0) < 0, then A—d;(8) is positive in (d¢(8),0). Thus there exist £; and & such
that d;(0) < & < & < 0. From Assumption Bj, since g()) is strictly positive on
(&1, &), there exists a 71 > 0 such that g(A) > n1 on [£;,£;]. Thus we obtain

Tim 250 (A= d@)gNdr > [E( - dy(9))g(A) dr
> M fgH ~ di(6)) d.

Likewise if d¢(6) > 0, we have similar result. Thus, we have Q(6;8) > Q(6,; 3)
on R(#) because the last term is positive.
Finally, from Assumption A3 and above fact we obtain

inf E 6:8) > inf X1dG(\)dH (), A3
jo B Pexa@n(6:8 )"no—liuw/w/zz 1dG(N)dH () (43)

where w = {z € Q|f(z,0) # f(z,6,)}. In virtue of (A.2) and (A.3), we get for
sufficiently large n

(A.2)

inf  EexzQn(0; 8) 2 12,
ol Fexs@n(6:8) 2 m2

where 7, is a positive real number. The proof is completed.

Proof of theorem 3.1
For the first aim, note that n[S},(6;8) — Sn(6;8)] < > iy ZolTnI{ln(e)|<~1—}'

Thus Chebyshev’s inequality gives

1<t<n
2.2
16aze

nmax Varly,, <)

PlIn{57(6; 8) — Sn(6; B)} > €] <
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In addition, since E[I{lre(e)ls—L}] = 32:(9(17”)), where 1, = o(1) and n? = o(ad),
we have "
n{S5(0; 8) — Sa(6: 8)} = 0,(1).

On the other hand, because {S:(6;8) — Sn(60;8)} is continuous and ©(f) is
compact, there is a 8* on ©(S) such that

sup {S7.(0;8) — Sa(6:8)} = {S(67; 8) — Sn(67;8)}-
8€0(p)

Hence we obtain

sup n{S;(6;8) — Sn(6;8)} = op(1). (A.4)
60(8)

Thus the proof of (i) is completed.
For the second purpose, note that

S2(0n; B) — S(00;8) < [S3(6038) — Sn(8r; B)] + [Sn(6n; B) — S (6n; B)).
From the fact (A.4), it follows that
n{S;;(6n; B) — Sp(6n; B)} = 0p(1).

Also by a Taylor expansion, we have S:;(én; B8) — S’,*,(H;l; B) is equal to
x (7 0 0 1 - Y * (0 A Y
VS3(6n; 8)(6n = Bn) + 5 (B — 0n) V27 (8r; B) (6 ~ ),

where 8, lies between &, and ,,. Since VS;(H;,; B) is equal to zero and V2S}(8,,; 5)
is symmetric matrix, Courant-Fisher minimax characterization and Assumption
C yield

~ -~ ~ ~ 2n /5 >
n(gn - 0n)T(0n - on) < 'S\"{Sn(gmﬂ) - Sn(en;ﬁ)}a
n
where )\, is the smallest eigenvalue of st,*; (6,.; B). Thus, it suffices to prove that
V282 (0y,; B) converges to a positive definite. Since

Elhy(r:(82))] = 9(0) + o(1),

and

Varlhy (re(6a))] < 59(0) +o(1),

Chebyshev’s inequality gives

LS W(ru(@)) = 9(0) + o)
t=1
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because of a;,, = o(n). Now, we consider proof of the final object. From the Mean
Value Theorem, we obtain

Sn* (623 B) = VSi* (60; 8) = V255" (B3 B) (6 — 6),

where @, lies in the interior of the line segment joining §, and 6,,. It follows that
V(6 — 6,) = V257 (6a; B) T VRV 5, (663 B).-

Because of §, converges to 6, almost surely(a.s.), it suffices to prove normality

of —/nVS;(6,;5). Since
L 2B

Qn

E[vn(hy (&) I{Iet|<—}] ——(g9(4x)),

3 2 2 (84
where h%(l‘) = ['—ian xz° + —22.’1: + ,B] I{|z|5$} + ’BI{I>31;‘} + (ﬂ - l)I{$<-—$}’
&, = o(1), Markov’s theorem gives

n Z Vb (re(ee)) e, (e 2] = 0p(1)
because of n'3" = o(ay). Hence we have —/nVS*(6,; B) converges to
1
% ;['BI{&>#} + (IB - 1)I{E,<_#}]Vft(00).

For any nonzero vector A = (A, -, )\p)T, we first prove the asymptotic normality
n

of Z MTU,, where

t=1
At = ﬂI{et>a;r_‘_} + (ﬂ - l)I{Et<—$}

and »
1 0
—ﬁgxk%ﬁwomt
b2
Since E(Uy) converges to zero and Var(U;) converges to ﬁﬂ(l — fB) (< o) as

n — oo, where b; = Z Ak = 30, ft( ). By the application of Linderberg Central

Limit Theorem and Cramer—Wold device, we have

b; = [Z Akb'(;_kft(eo)r = AT [V £:(00) V7 £:(60)) 2.
k=1
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We conclude that

1 & d
ﬁ ; Atvft(oo) — Np(Oaﬁ(l - ﬁ)v(eo))'
We reach the result of this theorem.
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