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NONLINEAR ASYMMETRIC LEAST SQUARES
ESTIMATORS'

SEuNG HoE CHor', HAE KyuNg KiM? AND YOUNG LEE?

ABSTRACT

In this paper, we consider the asymptotic properties of asymmetric least
squares estimators for nonlinear regression models. This paper provides suf-
ficient conditions for strong consistency and asymptotic normality of the
proposed estimators and derives asymptotic relative efficiency of the pro-
posed estimators to the regression quantile estimators. We give some ex-
amples and results of a Monte Carlo simulation to compare the asymmetric
least squares estimators with the regression quantile estimators.
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1. INTRODUCTION

As for linear models, least squares (LS) estimators occur as the most im-
portant estimation method for nonlinear regression models. However, in spite
of many favorable properties, a certain criticism on procedures based on least
squares method has been pointed to robustness over outliers or slight departure
from normality assumptions on errors. An alternative to LS estimators is of-
ten considered due to the fact that the distributions of errors are either grossly
skewed or contaminated in many applied problems.

Alternative methods based on suitable notions of sample median or quantiles
have been proposed by various authors: Oberhofer (1982), Koenker and Bas-
set (1978), Basset and Koenker (1982, 1986), Juretkovd and Prochdzka (1994),
Buchinsky (1998), and Choi et al. (2001) are among those. Oberhofer (1982)
proposed least absolute deviation (LAD) estimators based on sample median for
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nonlinear regression models and gave suflicient conditions for consistency of the
estimators. Basset and Koenker (1982, 1986), and Koenker and Basset (1978)
proposed regression quantile (RQ) estimators which provide a natural generaliza-
tion of the notion of sample quantiles to linear regression models and discussed
asymptotic behavior of the estimators in linear models. Jureckova and Prochazka
(1994) studied asymptotic properties of RQ estimators and trimmed LS estima-
tors in nonlinear regression models with intercept terms. Buchinsky (1998) pro-
vided a survey of recent theoretical development of RQ estimators. Choi et al.
(2001) investigated asymptotic behavior of RQ estimators under the conditions
different from those suggested by Juretkova and Prochizka (1994).

In this paper we focus on an alternative estimation procedure that extends
the concept of quantiles to more general nonlinear regression models with either
skewed or contaminated errors. Consider the following nonlinear regression model

ye = f(ze,00) + &, t=1,...,n (1.1)

where y; is the t'* observable response variable, z; € T is a (1 X ¢) vector of
input variable, the true parameter 6y = (6, ...,6,) belongs to a parameter space
© € RP and the response function f(z,6) is continuous on R? x RP. We assume
throughout that the disturbance {¢;} are independent and identically distributed
(7id) random variables with a probability density function (pdf) g(z) and a finite
variance.

The [-regression quantile, denoted by 5,,(,3), is defined as the value of 8
minimizing the following function

Ral638) = Y 0l — £(21,0)) (1.2
t=1

where the “check function”

Bz, if £2>0,

and 0 < B8 < 1. The LAD estimators are easily seen to be a special case of the
B-regression quantile when 8 = 1/2.

Although the RQ estimators based on a general idea of quantiles are more
efficient than LS estimators in the case of heavy-tailed or skewed error distri-
bution, RQ estimation may be poor in the case where the distribution of the
disturbance is a contaminated normal or is close to normal. For example, assume
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that the cumulative distribution function (cdf) G(z) of the disturbance ¢, is the

contaminated form
Gz)=A0(z)+ (1 —AN)P(z - 1)

where ®((z — p)/o) denotes the cdf of the normal distribution with mean p and
variance o2 and A € [0,1]. Then, the efficiency of the LS estimators to the LAD
estimators, which equals the ratio of the variance and the value of the density
at zero, is 1.4567/1.5567 < 1 in the case of 0 = 2 and A = 0.99. So, the LS
estimators are more efficient than the LAD estimators. Therefore, in this case it
is needed to develop alternative estimators of the RQ estimators, which are based
on the concept of gravity center for errors.

Newey and Powell (1987) replace the “check function” of the RQ estimators
with the following loss function

T2, if >0,
(1—-7)z?, if z<0,

pr(@) = Ir - 1(z < 0)]a? = {

where 0 < 7 < 1. Any value of § which minimizes the objective function
1 n
Su(637) =~ > pr(ye = f(21,6)) (13)
t=1

is called asymmetric least squares (ALS) estimator of the true parameter 6y based
on (yz,z¢) and is denoted by 6,(7).

Note that the LS estimators is obviously an important special case of the ASL
estimators because the loss function p,(z) rotates the square function z?/2 by
some angle ¢ in the clockwise direction. Newey and Powell (1987) explained the
advantages and disadvantages of the ALS estimators relative to the RQ) estimators
and investigated asymptotic behavior of the ALS estimators in linear models with
i2d random errors.

The main purpose of this paper is to provide sufficient conditions for the
asymptotic properties of the ALS estimators. The outline is as follow. In Section
2, we provide the sufficient conditions for strong consistency and asymptotic
normality of ALS estimation in nonlinear models. Next, we derive confidence
regions based on the ALS estimators and asymptotic relative efficiency (ARE) of
the ALS estimators with the RQ estimators, in Section 3. Finally, we consider
some examples and provide the results of the simulation study comparing the
ALS with the RQ estimators, in Section 4.
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2. AsympTOTIC PROPERTIES OF ALS ESTIMATION

In this section we present the sufficient conditions for consistency and nor-
mality of the nonlinear ALS estimators. Let G(z) denote the distribution func-
tion of the disturbances and ¢,(f) indicate the number of elements of the set
{t: f(z1,0) # f(zt,00)} for each 8 € © with 6 # . To simplify the notation,
we denote 52

5] S
f(0) = f(z,0), V£ = [%ft(e)] ox1)] VEf(®) = [501-391‘ ft(e)] (pxp)

Throughout this paper, we want to make the following assumptions in the
nonlinear regression model (1.1):

ASSUMPTION A.

(A1) The parameter space © is a compact subspace of R? and I is a bounded
subset of RY.

(A2) For all ¢, the partial derivatives Vf;(9) and V2f,(8) exist, and Vf;(6) are
continuous on I' X ©.

(A3) The ratio of the number of elements of the set {t : f(z:,0) # f(z,60)}
to of the sample size in the model (1.1), denoted by g¢,(6)/n, converges to
q,0<g<1.

AssuMPTION B. The probability density function g(z) is continuous and
strictly positive at zero.

The following lemma deals with uniform convergence of the modified objective
function

Qn(0;7) = Sn(6;7) — Sn(GO;T)- (2.1)

Since Sy, (6p; 7) is independent of 6, the ALS estimator is equivalent to the value

minimizing (2.1).

LEMMA 2.1. Suppose that Assumptions (A1) and (A2) are satisfied for the
model (1.1). Then we have

Qn(0;7) — E{Qn(6; )} = 0p(1)
where o0p(1) denotes convergence in probability.

PROOF. The proof of this lemma is given in Appendix. a
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When the distribution of ¢; is not symmetric about zero, then the variable y;
in the model (1.1) is asymmetrically distributed about f;(6y). So, to revise this
circumstance we consider the new disturbance & which has the pdf given by

h(z) = { (1 —7)a{r)g(z), if z <0,

Ta(7)g(z), if z2>0,
where a(7) = 1/{G(0) + (1 — 2G(0))}. Specially, let

0 0
_ - z9(z)dz _ e ]mlg(z)da: (2.2)

fi)oowg(w)dx — [5 zg(z)dz E|e|

Then, by simple calculations we know that the expected value of €; is zero. This
means that 7 in (2.2) transforms the random variable with non-zero mean into
a random variable with zero mean. Moreover, if error terms have a pdf which
is symmetric about zero, then we get 7 = 1/2 and a(7) = 2. That is, the ALS
estimators 8, (r) coincide with the LS estimators in this case.

For the main result of this section we require the following condition:

AssuMPTION C. V,(6p) = n=' 37 | Vf1(60)VT f:(6o) converges to a posi-
tive definite matrix V() as n — oo, where T' denotes transpose of matrix.

In the following theorem we present sufficient conditions for strong consistency
of the ALS estimators.

THEOREM 2.2. Suppose that Assumptions A, B and C hold for the model
(1.1). Then the ALS estimators 0,,(7) converges almost surely to the true param-
eter Gy.

ProoOF. For any § > 0, it is enough to show that

nlggo”a_légpa{Q"(g; 7)} >0 ae.

A detailed proof of this is given in Appendix. 0

The following theorem provides asymptotic normality of the ALS estimators.
The normality of the proposed estimators can be obtained by an expansion of
VS,(0; 7) or a linear expansion of f;(#). In this paper we used the former expan-
sion which is cited often in nonlinear models, see Seber and Wild (1989).
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THEOREM 2.3. Under the same conditions as in Theorem 2.2, \/n(6(7) —
6o) converges in distribution to a p-variate normal vector with mean zero and
variance-covariance matriz w(t)V "1(6y). That is,

V(Bn(r) = 89) 5 N(0,w(r)V"1(60)),

where
(1 - 27)m(1) + 7%(0? + p?)

{GO) +7(1-26(0)))

w(r) =

and m(t) = fi)oo z2dG(z).
PROOF. From a first order Taylor series expansion we get
VSn(On(7); T) — VSu(80;7) = V28,(6:(7); ) (6n(7) — o)

where (0% () — o] < [|6n(7) — 6o]|. To derive the normality of the ALS estimator
we have to show that

VIV S, (60;7) 5 N(0,4w,V (65)),
V2Sn(00; T) — 2wV (60) = 0p(1),

where wy = (1 — 27)m(7) + 7%(0? + p?) and wo = G(0) + 7(1 ~ 2G(0)). The rest
of the proof of this theorem is given in Appendix. O

Note that if ¢; has the normal distribution with mean zero and variance o2,

then we obtain
7=1/2 and w = ¢2.
Hence, for the LS estimator 6,,(1/2), Theorem 2.3 implies that
Vi(bn(3) ~ 80) 5 N(0,0°V1(60)),
which is the same result as in Jennrich (1969) and Wu (1981).

REMARK. To distinguish between 6,(;) and 6,(72) for 7, # 7o we let the
response function have an intercept term. That is,

F(z,0) = 0, + f(z,(8a,...,6,)). (2.3)

For this, let the pdf of the new disturbance ¢ be defined by

vy = { L= a(r)g(a), i 7 < u(r),
v = {T*Q(T*)gm, if 7> u(r*),
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where
. fff;*’u — ul(r))g(w)da
[0 @ = (r))g(@)dz — [ (2 = p(r*))g(@)dz
f” )Iw ™)|g(z)dz
Ele— ( 9

and a(7*) = 1/[G(p(r*)) + 7*{1 — 2G(u(r*))}]. Then, an easy calculation shows
that the disturbance €; has non-zero mean p(7*). Newey and Powell (1987)

referred to pu(7*) as the (7*)™ expectile and suggested the existence and the

properties of u(7*).

Now, we obtain the interesting properties of the ALS estimators by converting
Sn(0;7) in (1.3), Qn(6; 7) in (2.1) and Assumption B into S, (0; 7*), Qn(8; 7*) and
Assumption B*, respectively. We define

ZPT yt $t, ) /1’(7-*))’

Qn(0;7*) = Sp(6;7%) — Sn(60; 7°).
The following assumption takes the place of Assumption B in nonlinear models

with intercept terms.

ASsSUMPTION B*. The probability density function g(z) is continuous and
strictly positive at p(7*).

The following theorem provides sufficient conditions for the asymptotic prop-
erties of the ALS estimators in the model (2.3) and the proof of the following
theorem is an easy modification of the proofs of Theorem 2.2 and Theorem 2.3.
So, we omitted the proof here.

THEOREM 2.4. Suppose that Assumptions A, B* and C hold for the model
(2.3). Then we have
Bu(7) =% (61 + (), 02, 6y),
A * * L * —
\/—ﬂ(on(T ) - (01 + /'L(T )792, v aep)) - N(07w(7- )V 1(60))7

where
(1 —27")m(r*) + (7*)*{o* + u #(m*))*}
{Gu(m) + (1 — 2G(u(r))}?

w(t*) = (
and m(1*) = ffoo(:z: — u(7%))2dG (z).
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3. ASYMPTOTIC RELATIVE EFFICIENCY

In this section we consider asymptotic relative efficiency of the ALS estima-
tors to the RQ estimators, based on the volumes of the corresponding confidence
regions for a specified value of the limiting confidence coefficient. First, we in-
vestigate asymptotic normality of the RQ estimators to induce ARE of the ALS
estimators to the RQ estimators. For this aim, we add the following assumption.

AssuMPTION D. The probability density function g(z) is continuously dif-
ferentiable and strictly positive at § = G(0).

The asymptotic normality of the RQ estimators is given in the following result
which is conformable with Theorem 2.3 in Jureckova and Prochédzka (1994) in the
case of nonlinear regression models without intercept terms. Choi et al. (2001)
proposed sufficient conditions for the asymptotic properties of the RQ estimators.

THEOREM 3.1. For the model (1.1), suppose that Assumptions A, C and D
are fulfilled. Then the RQ estimators 6,,(8) has asymptotically normal distribu-
tion with mean zero and variance-covariance matriz nV ~1(6y), i.e.,

V(0n(8) — 80) 5 N(0,7V1(60)), . (3.1)
where n = {B(1 - B)}/(9(0))*.
PROOF. For a detailed proof, see Choi et al. (2001). O

As mentioned in Serfling (1980) and Sen and Singer (1993), asymptotic rel-
ative efficiency of two estimators is defined by the ratio of volumes of the cor-
responding confidence ellipsoids for a specified value of the limiting confidence
coefficient. To compare the ALS with the RQ estimators, let

Un(7) = nw ™ (0,(7) — 00) T Vi (B, (7)) (B (7) — 60)

and
Un(B) = nn™ " (0n(B) — 60)TVo(8,(8)) (6n (B) — 60).

On the other hand, the formula (3.1) and Theorem 2.3 imply that U,(7) and
Un(B) have asymptotically a chi-square distribution with p degrees of freedom,
denoted by Xg- Let ¢, be defined by P(Xf, > ¢q) = . Then the confidence
regions

E (1) ={6:Un(1) < ca}
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and

En(8) ={0:Un(B) < ca}

have asymptotic confidence coefficient 1 — o and have volumes

/2 (ca /m)P 2w/

T(p/2 + 1)| V(8 (7))[ /2

and
/2 (ca )P0/

T(p/2 + 1)|Vi(6,(8))]1/2

Hence, from these results we have the next consequence.

THEOREM 3.2. Under the same conditions as in Theorem 2.3 and Theorem
3.1, the asymptotic relative efficiency of the ALS estimators with respect to the
RQ estimators is the ratio of w(r) and n(B), that is,

i (071 1,(8) = 20

where w(7) and n(B) are given in Theorem 2.3 and Theorem 3.1, respectively.

PROOF. The theorem immediately follows from Theorem 2.3 and Theorem
3.1. O

Now, we explain the ARE of the ALS estimators to the RQ estimators when
the random errors have the following distributions.

EXAMPLE 3.1 (Contaminated normal distribution). The cdf of the distur-
bance ¢; is given by

Gz) =A0(z) + (1 - N®(z—1), -oco0<z<o00,
where A is a constant in the interval [0, 1]. Let A = 0.9. Then, we get
7=0.3219, = G(0) = 0.4659, w = 1.6902, and 7 = 1.6937.

Thus, we have
16902

nli_{goe(én(T)|9~n(/3)) = Teo37 < b
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EXAMPLE 3.2 ( Contaminated double ezponential distribution). Let Z(z : v,
k) be double exponential distribution with mean - and variance 2. Consider
the following distribution

G(z) =22(z:0,1) + (1 = NE(z:1,1), —o0o<z<00.
If A = 0.7, simple calculations show that

7= 0.5611 and 8 = G(0) = 0.9018.

Also, since
w = 0.8201 and n = 0.1081
we obtain
- ~ 0.8201
lim e(6, =——>1
Jim (0 (7)16n(6)) = 5~oer >

EXAMPLE 3.3 (Mized distribution of normal and double ezponential). Con-
sider the following distribution

G(r) =A®(z) + (1 - NE(z:1,1), —o00<z<00.
If A = 0.9, by a similar method we get
7=0.1727 and 8 = G(0) = 0.4684.
From the result
w =0.0789 and n = 1.02,

we bave 0.0789

1.02

lim e(6,(7)|6,(8)) = <1
n—oco

Theorem 3.2 and the above examples imply that the ALS estimators is more
efficient than the RQ estimators when the distribution of errors is a contaminated
normal or is close to normal.
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4. MONTE CARLO SIMULATION

In this section, to compare the four estimators (LS, LAD, RQ, ALS) we
perform a Monte Carlo simulation. We consider in this experiment the following

model
ye=601e7%% 1 ¢, t=1,...,15. (4.1)

The disturbance ¢; are generated as random variates from one of the following
distribution:

1. the standard normal distribution, denoted by N(0,1);

2. the double exponential distribution with mean zero and variance 18, de-
noted by DE(0, 3);

3. the normal distribution with mean one and variance one, denoted by N(1,1);

4. the double exponential distribution with mean one and variance 18, denoted
by DE(1,3).

In all cases the parameter 6, is set to equal 1,000, the other parameter 6
equals to 1.5, and z; equals to ¢{. The following table reports the results for the
four distributions when 1,000 simulation runs were executed. In each cell, the
first figure gives the mean of the estimates and the second figure presents the
average of the mean squared errors.

TABLE 4.1 Estimate and mean square error

Distribution LSE LAD ALS RQ

N(0,1) 1.500006 1.500055 1.50511 1.502926
(1.573831e-05)  (1.879849¢-05)  (5.4532598e-05)  (4.532599e-05)

DE(0;3) 1.499257 1.499345 1.503353 1.501119

(0.000322) (0.000391) (0.000346) (0.00041)

N(1,1) 1.494144 1.495652 1.497482 1.497086
(4.983533e-05)  (3.764651e-05)  (2.747208e-05)  (3.396625e-05)

DE(1;3) 1.493909 1.495516 1.495293 1.495987

(6.595429e-05)  (5.443909e-05) (5.21137e-05) (5.25472e-05)

In Table 4.1, with respect to the average of the estimates we see that the
ALS estimator performs better than the RQ estimator when the error has an
asymmetric normal distribution. On the other hand, in the case of an asymmetric
and heavy-tailed distribution the RQ estimator is superior to the ALS estimator.
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From Theorem 3.2, Table 4.1 and examples in Section 3, we obtain the following
table which identifies the estimator with the best performance for each error
distribution.

TABLE 4.2 Best estimator

Best estimator error distribution
LSE symmetric normal distribution
ALS asymmetric normal distribution
LAD symmetric and heavy-tailed distribution
RQ asymmetric and heavy-tailed distribution

5. CONCLUSIONS

In this paper we proposed the ALS estimators for the regression parameters
in nonlinear regression models with either grossly skewed or contaminated error
distribution. The proposed estimators have been proved to be strongly consistent
and asymptotically normal under some mild conditions. From the asymptotic
efliciency based confidence regions and a large simulation study we concluded that
the ALS estimators perform better than the RQ estimators when the distribution
of errors is a contaminated normal or is close to normal. In the case of an
asymmetric and heavy-tailed distribution, the RQ estimation is superior to the
ALS.

APPENDIX

Proor oF LEMMA 2.1. Let

Ay(r) = |7 = Lye < fu(8)) (e = de(8))* ~ |7 — L(ye < f2(60)) €}

Then Ay(7) equals to

(1 = 7)(2€; — di(0))(—d(9)), yr < f1(6), vt < fe(o),

7(2e, — di(8))(—d:(9)), ye > f1(0), > fe(Oo),

(1= 7)d?(0) — (17 — 1)2e:d:(0) + (1 — 27)¢€?, yr < f1(0), y¢ > fi(6o),

Td?(0) — 726,dy(0) + (27 — 1)€?, ye > fi(0), yr < fi(6o).
Moreover,

[At(T)] < (12€:] + [d:(6)1)1d:(6)]
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or
[Ae(T)] < |de(O) ] + 2lec] - e (0)] + leal”.

From the assumption of the error terms, E(e?) < oo, and Assumption A, we
know that there exists M > 0 such that |A4;(7)] < M. In virtue of Chebyshev
inequality we obtain

n 7Y — )2
P{lan; 7) — EQn(6;7)| > E} < izt Ee(AtT(L222 EAy(7))

maxlStSnVarAt('r)

ne2

Hence, the proof is completed. a

PROOF OF THEOREM 2.2. From Lemma 2.1 we get
1 n
Qn(057) =~ ;EeAt(T) + 0p(1).

First, we prove that 6; is a local minimizer of

n—oon

1 n
Q(ea T) = lim - Z EQn (9, T)'
=1
By simple calculations we have

v = im - 23 | T = 100 < d(0)| ) d(6) }G W)V £i(6)
t=1 v~

n d¢(60)
= lim - %Z { / (1 = 7)(A —di(0))dGr(N)
t=1 -

+/°° - —dt(ﬁ))th()\)}Vft(e)
di(9)

and

n di(6) 0
v2Q(6;7) = nli)nc}o% > [2{/ (1 - 7)dGy(X) +/ Tth()\)}Vf,,T(H)Vft(G)

=1 ~00 de(9)

o0

—2{ /_oo {7 — 1(A < dy(0)}I(A - dt(e))th(x\)}Vth(e)} :
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Let 6(7) = min{7,1 — 7}. Then we can choose >0 such that 0 <7 <d(7) < 1.

Since

0 00
/ (1< 1)dG,(\) + / dGy(\) > 1> 0,
- 0

oo
V2Q(0o; 1) is a positive definite matrix. Hence VQ(6p; 7) = 0 implies that 6 is
a local minimizer of Q(0; 7).
Second, we show that this local minimizer 6y is indeed the global minimizer.
Let Nj(6p) = {0: |6 — 6o|| < 6}. Then, from the fact that R*(6) = N§(6p) N O is
compact we have 8* such that

QH*7)= inf )Q(O;T).

0cR*(0

If di(8) > 0, we obtain

QUOs7) = lim = 3" Bo{|r — 1{er < du(0))l(ee — du(0))? |7 — 1(er < 0)[é})
=1
=1
where

Bir) = [ {Ir =10 < @)l - 0)? = Ir — 101 < )N}, ).

By simple calculations and (2.2), B¢(7) equals to

de() 0
(1~7){ /0 (dy(6) — N)2dG () + / d?(e)th(A)}

0o 0 . B d¢ (6) 2
+r{ /0 d2(0)dG, () /O (d:(6) — N)2dG (M) V.

Moreover, —A(X — 2d¢(#)) is positive on (0,d;(0)). Hence By(7) is strictly
positive and
Qn(6;7) > 0. (A.1)

inf
[|0—80][>6
By a similar method we have the same conclusion in the case where d;(6) < 0.
Hence, the theorem follows from Assumption (A3) and (A.1). O
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PROOF OF THEOREM 2.3. First, we consider
VIV S (60;7) 5 N (0, 4w,V (6)).

Let ¢(1) = —2|7 — 1(e: < 0)|e; and di(7) = 2|7 — 1{¢; < 0)|. Then, from (1.3) we
obtain

1
Also, in virtue of (2.2) we have E(ci(7)) = 0. Since the disturbance ¢; are inde-
pendent, we obtain

0 0 o0
Var(ci(7)) = 4{/_ r2dGy(z) — 27/_ £2dGy(z) + 72/— deGt(x)}
=4{(1 = 27)m(7) + 72 (e + u?)}.

Let D = (di,...,dp)T be any nonzero vector. Then

DT /nV S, (80; 7) ZZ 7)dx (f2)x(00)

t=1 k= 1
where (ft)k(eo) = 8ft(00)/69k Let Znt = n_l/2btct( and bt Zk 1 dk ft ( 0).

Then, E(Zy;) = 0 and Var(Z,;) = n~ b7 Var(c,(7)). Let B2 = > "1 | Var(Zp)
n~13 % | b?Var(ci(r)). For arbitrary € > 0

B2 ZE ZntI{lZntI>eB }( )]

"tl

is less than

n

Zt Itiar c(T ! [ tct {]Ct(7)|>b* vV Xt b2 Var(et(7)) }

t=

where bj = maxi<¢<n b;. Therefore,

B2 ZE ZI{ 7,41 >e By (T)]

"tl

converges to zero because (b)~'\/n > "1, Var(Z,:) diverges to co as n — oo.
Hence, by the Lindeberg form of central limit theorem

Zt 1 Znt C
1
B, = N(0,1).
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That is,
\/T_USTVSn(@o;T) 4 N(0,1).
2t=1 Var(Zn)
Since
ZVar ) ZDTVft(GO)VTft(f)O)DVar(ct( ),
g
we have

VDTV S8, (60;7) 5 N(0,4w; DTV (60)D).

Thus, Cramér-Wold device implies that
VAV Sn(60;7) 5 N (0,4, V (65)).

Next, to prove the second result we show that
V28S5(60;7) Z{dt )V £1(60) VT f2(80) — c(7) V2 f2(60) }
converges to 2{(1 — 7)G(0) + 7(1 — G(0))} V(o). Let

Ip=§ych%vmm

n

1
I = = ar(r)V2fulbo)-
=1
Since ¢;(7) has mean zero and a finite variance, Chebyshev inequality implies
that

n

Iy = ;11— > a(r) V2 fi(60)

t=1
converges to 0 as n — oco. Let

U (80) = de(7)(f2)i(60)(f2);(60).-

Then, for an arbitrary ¢ > 0

[;

Z {UU 90 .E/ Ul](go))}. > E:l < ———ZV&I‘(U](H()))

t=1
- max;<i<n Var(U}” (6o))

ne?
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The fact

1
n

S {Uj7(60) — B(UY (80)}| = 0p(1)
t=1

follows from Chebyshev inequality. Thus,
1 ¢ T
=~ 2l7 = (e < 0)[V/(60) V7 f2(60)
t=1

converges to E{2|r — 1(e; < 0)|}V(6) as n — co. On the other hand, since
E{2|r — (e < 0)|} = 2{(1 - 7)G(0) + 7(1 - G(0))},

we get
I, — 2{(1 = 7)G(0) + 7(1 — G(0)) }V (60) = 0, (1).

By the first and second results, we have

Vr(bn(r) — 60) 5 N (0, ‘;L;V*l(eo)).

Hence, the proof of Theorem 2.3 is completed. =
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