• 제목/요약/키워드: nonlinear behaviors

검색결과 566건 처리시간 0.033초

심전도에서의 비선형적 특성 분석에 관한 연구. (A study on the analysis of nonlinear characteristics of ECG.)

  • 이종민;박광석
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1993년도 추계학술대회
    • /
    • pp.163-166
    • /
    • 1993
  • It has been shown that some of physiological systems have nonlinear dynamics. The evidences of these nonlinear behaviors make us analyze physiological systems in the new viewpoint. And, nonlinear dynamics can be represented by chaotic behaviors, which is studied by several methods - correlation dimension, return map, power spectrum analysis, etc. This study is on the analysis of nonlinear characteristics of ECG. Data have been acquired from the 20 children (10 - 13 years old). and 30 students (20 -24 years old). We have calculated parameters HR, PR, VAT, TD, TRD from data. and estimated correlation dimension, return map, power spectrum. Results show the nonlinear characteristics of ECG.

  • PDF

외력을 가진 사랑 모델에서 비선형 거동 해석 (Analysis of Nonlinear Behavior in Love Model with External Force)

  • 황림운;배영철
    • 한국전자통신학회논문지
    • /
    • 제10권7호
    • /
    • pp.845-850
    • /
    • 2015
  • 사람의 감정 중의 하나인 사랑은 사회학과 심리학에서 주된 관심사로 연구되어 왔다. 기본적인 사랑 모델에서 비선형 특성을 찾기는 어렵다. 따라서 본 논문에서는 기본적인 사랑모델에서 비선형 거동을 찾기 위하여 기본적인 사랑 방정식에 외력을 주고 이때의 시계열과 위상 공간을 통하여 비선형 거동이 있음을 확인한다. 또한 이 비선형거동이 일반 카오스 발생현상인 주기배증과정, 카오스, 주기과정의 현상과 유사하게 유사한 주기 배증 과정, 카오스, 주기과정이 있음을 확인한다.

Nonlinear finite element analysis of circular concrete-filled steel tube structures

  • Xu, Tengfei;Xiang, Tianyu;Zhao, Renda;Zhan, Yulin
    • Structural Engineering and Mechanics
    • /
    • 제35권3호
    • /
    • pp.315-333
    • /
    • 2010
  • The structural behaviors of circular concrete filled steel tube (CFT) structures are investigated by nonlinear finite element method. An efficient three-dimensional (3D) degenerated beam element is adopted. Based on those previous studies, a modified stress-strain relationship for confined concrete which introduces the influence of eccentricity on confining stress is presented. Updated Lagrange formulation is used to consider the geometrical nonlinearity induced by large deformation effect. The nonlinear behaviors of CFT structures are investigated, and the accuracy of the proposed constitutive model for confined concrete is mainly concerned. The results demonstrate that the confining effect in CFT elements subjected to combining action of axial force and bending moment is far sophisticated than that in axial loaded columns, and an appropriate evaluation about this effect may be important for nonlinear numerical simulation of CFT structures.

복사 열손실을 받는 대향류 확산화염의 맥동 불안정성의 비선형 거동 (Nonlinear Behaviors of Pulsating Instabilities in Counterflow Diffusion Flames with Radiation Heat Loss)

  • 이수룡;박성천
    • 한국연소학회지
    • /
    • 제17권3호
    • /
    • pp.9-16
    • /
    • 2012
  • Nonlinear dynamics of pulsating instability in radiating counterflow diffusion flames is numerically investigated by imposing Damk$\ddot{o}$hler number perturbation. Stable limit-cycle solutions occur in small ranges of Damk$\ddot{o}$hler numbers past bifurcation point of instability. Period doubling cascade and chaotic behaviors appear just before dynamic extinction occurs. Nonlinear dynamics is also studied when large disturbances are imposed to flames. For weak steady flames, the dynamic extinction range shrinks as the magnitudes of disturbances are increased. However, strong steady flames can overcome relatively large disturbances, thereby the dynamic extinction range extending. Stable limit-cycle behaviors reappears prior to dynamic extinction when the steady flames are strong enough.

A nonlinear structural experiment platform with adjustable plastic hinges: analysis and vibration control

  • Li, Luyu;Song, Gangbing;Ou, Jinping
    • Smart Structures and Systems
    • /
    • 제11권3호
    • /
    • pp.315-329
    • /
    • 2013
  • The construction of an experimental nonlinear structural model with little cost and unlimited repeatability for vibration control study represents a challenging task, especially for material nonlinearity. This paper reports the design, analysis and vibration control of a nonlinear structural experiment platform with adjustable hinges. In our approach, magnetorheological rotary brakes are substituted for the joints of a frame structure to simulate the nonlinear material behaviors of plastic hinges. For vibration control, a separate magnetorheological damper was employed to provide semi-active damping force to the nonlinear structure. A dynamic neural network was designed as a state observer to enable the feedback based semi-active vibration control. Based on the dynamic neural network observer, an adaptive fuzzy sliding mode based output control was developed for the magnetorheological damper to suppress the vibrations of the structure. The performance of the intelligent control algorithm was studied by subjecting the structure to shake table experiments. Experimental results show that the magnetorheological rotary brake can simulate the nonlinearity of the structural model with good repeatability. Moreover, different nonlinear behaviors can be achieved by controlling the input voltage of magnetorheological rotary damper. Different levels of nonlinearity in the vibration response of the structure can be achieved with the above adaptive fuzzy sliding mode control algorithm using a dynamic neural network observer.

형상과 단부조건에 따른 아치의 비선형 동적거동 (A Study on the Nonlinear Dynamic Behaviors of Arches due to the Change of Shapes and Boundary conditions)

  • 여동훈;이상호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.441-448
    • /
    • 1998
  • In this study, an explicit transient analysis program considering material and geometric nolinearities has been developed and used to analyze the dynamic behaviors of circular, parabolic, sinusoidal and catenary arches according to the change of shapes and boundary conditions. To understand dynamic behaviors of arches, first of all, the results of free vibration analysis for four kinds of arches are discussed. The results of transient analysis under impact loads we discussed in respect of boundary condition, change of height, and arch-shape. The dynamic behaviors of arches by nonlinear transient analysis considering both material and geometric nolinearities are also discussed.

  • PDF

Geometrical imperfection and thermal effects on nonlinear stability of microbeams made of graphene-reinforced nano-composites

  • Fenjan, Raad M.;Faleh, Nadhim M.;Ahmed, Ridha A.
    • Advances in nano research
    • /
    • 제9권3호
    • /
    • pp.147-156
    • /
    • 2020
  • This research is related to nonlinear stability analysis of advanced microbeams reinforced by Graphene Platelets (GPLs) considering generic geometrical imperfections and thermal loading effect. Uniform, linear and nonlinear distributions of GPLs in transverse direction have been considered. Imperfection sensitivity of post-bucking behaviors of the microbeam to different kinds of geometric imperfections have been examined. Geometric imperfection is first considered to be identical as the first buckling mode, then a generic function is employed to consider sine-type, local-type and global-type imperfectness. Modified couple stress theory is adopted to incorporate size-dependent behaviors of the beam at micro scale. The post-buckling problem is solved analytically to derive load-amplitude curves. It is shown that post-buckling behavior of microbeam is dependent on the type geometric imperfection and its magnitude. Also, post-buckling load can be enhanced by adding more GPLs or selecting a suitable distribution for GPLs.

FEA 모델을 이용한 굴곡진 보강섬유를 가진 두꺼운 복합재료의 비선셩 거동에 관한 연구 (Nonlinear Elastic Analysis of Thick Composites with Fiber Waviness Using a FEA Model)

  • 이승우;전흥재
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 춘계학술발표대회 논문집
    • /
    • pp.43-47
    • /
    • 1999
  • A FEA model is proposed to study the effects of fiber waviness on tensile/comprssive nonlinear behaviors of thick unidirectional composites. In the analyses both material and geometical nonlinarities are considered. The predicted results from the FEA model are compared with those obtained from the previous analytical model (thin carpet model) Tensile/compressive tests are also conducted on the specimens with various controlled fiber waviness to obtain the nonlinear behaviors of composites experimentally. The predictions from the FEA model show better agreements with the experiments than those from the analytical model.

  • PDF

SAS 반응기의 구조 안전성 평가 연구 (Study for Accessment of Structural Stability of SAS Reactor)

  • 이은우;정의동;김윤춘;김종배
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.43-49
    • /
    • 1995
  • Sasol Advanced Synthol Reactor was divided into two chambers by grid plate perforated with diffuser holes. The reactor has high stress level beacuse of membrane stress due to internal pressure, thermal stress due to temperature difference and local stress due to structural discontinuity at the juncture of grid plate and shell. Moreover, geometric nonlinear behaviors may appear in the grid plate because of pressure difference between two chambers. In order to survey the stress level and geometric nonlinear behaviors around grid plate, heat transfer analysis, linear static analysis and geometric nonlinear analysis were performed using NISA II developed by EMRC. This paper demonstrates the result of accessment for linear static and geometric nonlinear analysis under various load combinations.

  • PDF

Correlation of Experimental and Analytical Seismic Responses of a 1:5 Scale 3-Story Reinforced Concrete Frame

  • Lee, Han-Seon;Woo, Sung-Woo
    • KCI Concrete Journal
    • /
    • 제12권1호
    • /
    • pp.3-16
    • /
    • 2000
  • A series of dynamic and static tests were conducted to observe the actual responses of a 1:5 scale 3-story reinforced concrete(RC) frame which was designed only for gravity loads. One of the major objectives of these experiments is to provide the calibration to the available static and dynamic inelastic analysis techniques. In this study, the experimental results were simulated by using a nonlinear analysis program for reinforced concrete frame, IDARC-2D. The evaluation of the degree of the simulation leads to the conclusion that while the global behaviors such as story drifts and shears can be in general simulated with the limited accuracy in the dynamic nonlinear analysis, it is rather easy and simple to get the fairly high level of accuracy in the prediction of global and local behaviors in the static nonlinear analysis by using IDARC-2D.

  • PDF