DOI QR코드

DOI QR Code

Nonlinear finite element analysis of circular concrete-filled steel tube structures

  • Xu, Tengfei (Department of Bridge Engineering, Southwest Jiaotong University) ;
  • Xiang, Tianyu (Department of Bridge Engineering, Southwest Jiaotong University) ;
  • Zhao, Renda (Department of Bridge Engineering, Southwest Jiaotong University) ;
  • Zhan, Yulin (Department of Bridge Engineering, Southwest Jiaotong University)
  • Received : 2009.04.15
  • Accepted : 2010.01.27
  • Published : 2010.06.20

Abstract

The structural behaviors of circular concrete filled steel tube (CFT) structures are investigated by nonlinear finite element method. An efficient three-dimensional (3D) degenerated beam element is adopted. Based on those previous studies, a modified stress-strain relationship for confined concrete which introduces the influence of eccentricity on confining stress is presented. Updated Lagrange formulation is used to consider the geometrical nonlinearity induced by large deformation effect. The nonlinear behaviors of CFT structures are investigated, and the accuracy of the proposed constitutive model for confined concrete is mainly concerned. The results demonstrate that the confining effect in CFT elements subjected to combining action of axial force and bending moment is far sophisticated than that in axial loaded columns, and an appropriate evaluation about this effect may be important for nonlinear numerical simulation of CFT structures.

Keywords

References

  1. Ahmad, S., Irons, B.M. and Zienkiewicz, O.C. (1970), "Analysis of thick and thin shell structures by curved finite elements", Int. J. Numer. Meth. Eng., 2, 419-451. https://doi.org/10.1002/nme.1620020310
  2. Bathe, K.J. and Bolourchi, S. (1980), "A geometrical and material nonlinear plate and shell element", Comput. Struct., 11, 23-48. https://doi.org/10.1016/0045-7949(80)90144-3
  3. Cai, S.H. (2003), Modern Steel Tube Confined Concrete Structures, China Communications Press Co., Beijing, China. (in Chinese)
  4. Chen, B.C., Ou, Z.P., Wang, L.Y. and Han, L.H. (2002), "Experimental study on carrying capacity of concrete filled steel tubular column under eccentric load", J. Fuzhou Univ., 30(6), 838-844. (in Chinese)
  5. Chen, B.C., Chen, Y.J., Wang, L.Y. and Han, L.H. (2004), "Study of stress-strain relation of concrete filled steel tubular eccentric compression column", China J. Highw. Transp., 17(1), 24-28. (in Chinese)
  6. Elremaily, A. and Azizinamini, A. (2002), "Behavior and strength of circular concrete-filled tube columns", J. Constr. Steel Res., 58, 1567-1591. https://doi.org/10.1016/S0143-974X(02)00005-6
  7. Fujimoto, T., Mukai, A., Nishiyama, I. and Sakino, K (2004), "Behavior of eccentrically loaded concrete-filled steel tubular columns", J. Struct. Eng-ASCE, 140(2), 203-212.
  8. Gupta, PK., Sarda, S.M. and Kumar, M.S. (2007), "Experimental and computational study of concrete filled steel tubular columns under axial loads", J. Constr. Steel Res., 63, 182-193. https://doi.org/10.1016/j.jcsr.2006.04.004
  9. Han, L.H. (2004), "Flexural behavior of concrete-filled steel tubes", J. Constr. Steel Res., 60, 313-337. https://doi.org/10.1016/j.jcsr.2003.08.009
  10. Hu, H.T., Huang, C.S., Wu, M.H. and Wu, Y.M. (2003), "Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect", J. Struct. Eng-ASCE, 129(10), 1322-1329. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1322)
  11. Hu, H.T., Huang, C.S. and Chen, Z.L. (2005), "Finite element analysis of CFT columns subjected to an axial compressive force and bending moment in combination", J. Constr. Steel Res., 61, 1692-1712. https://doi.org/10.1016/j.jcsr.2005.05.002
  12. Huang, C.S., Yeh, Y.K., Liu, G.Y., Hu, H.T., Tsai, K.C., Weng, Y.T., Wang, S.H. and Wu, M.H. (2002), "Axial load behavior of stiffened concrete-filled steel columns", J. Struct. Eng., 128(9), 1222-1230. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1222)
  13. Marques, J.B. and Caldas, R.B. (2005), "Numerical analysis of composite steel-concrete columns of arbitrary cross section", J. Struct. Eng-ASCE, 131(11), 1721-1730. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:11(1721)
  14. Matsui, C., Tsuda, K. and Ishibashi, Y. (1995), "Slender concrete filled steel tubular columns under combined compression and bending", Structural Steel: PSSC'95-4th Pacific Structural Steel Conference, Steel-Concrete Composite Structures, Vol. 3, Singapore.
  15. Mirza, S.A., Hyttinen, V. and Hyttinen, E. (1996), "Physical tests and analyses of composite steel-concrete beamcolumns", J. Struct. Eng-ASCE, 122(11), 1317-1326. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:11(1317)
  16. Parisch, H. (1981), "Large displacements of shells including material nonlinearities", Comput. Method. Appl. M., 27, 183-214. https://doi.org/10.1016/0045-7825(81)90149-3
  17. Saenz, L.P. (1964), "Equation for the stress-strain curve of concrete", ACI J., 9(61), 1229-1235.
  18. Schneider, S.P. (1998), "Axially loaded concrete-filled steel tubes", J. Struct. Eng., 124(10), 1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)
  19. Susantha, K.A.S., Ge, H.B. and Usami, T. (2001), "Uniaxial stress-strain relationship of concrete confined by various shaped steel tubes", Eng. Struct., 23, 1331-1347. https://doi.org/10.1016/S0141-0296(01)00020-7
  20. Tang, G.Z., Zhao, B.Q., Zhu, H.X. and Shen, X.M. (1982), "Study on the fundamental structural behavior of concrete filled steel tubular columns", J. Build. Struct., 3(1), 13-31. (in Chinese)
  21. Worsak, K.N. (1978), "A simple and efficient finite element for general shell analysis", Int. J. Numer. Meth. Eng., 14, 179-200.
  22. Xiang, T.Y., Tong, Y.Q. and Zhao, R.D. (2005), "A general and versatile nonlinear analysis program for concrete bridge structure", Adv. Eng. Softw., 36, 681-690. https://doi.org/10.1016/j.advengsoft.2005.02.004
  23. Zeghiche, J. and Chaoui, K. (2005), "An experimental behavior of concrete-filled steel tubular columns", J. Constr. Steel Res., 61, 53-66. https://doi.org/10.1016/j.jcsr.2004.06.006

Cited by

  1. Stress-transfer in concrete encased and filled tube square columns employed in top-down construction vol.22, pp.1, 2016, https://doi.org/10.12989/scs.2016.22.1.063
  2. Comprehensive evaluation of structural geometrical nonlinear solution techniques Part II: Comparing efficiencies of the methods vol.48, pp.6, 2013, https://doi.org/10.12989/sem.2013.48.6.879
  3. Reliability analysis of circular concrete-filled steel tube with material and geometrical nonlinearity vol.20, pp.3, 2012, https://doi.org/10.1007/BF03325791
  4. Finite element analysis of concrete-filled steel tube (CFST) columns with circular sections under eccentric load vol.148, 2017, https://doi.org/10.1016/j.engstruct.2017.06.064
  5. Reliability Analysis of Circular Concrete-Filled Steel Tube with Material and Geometrical Nonlinearity vol.446-449, pp.1662-8985, 2012, https://doi.org/10.4028/www.scientific.net/AMR.446-449.550
  6. Study on Nonlinear Structural Behaviors of Steel and Concrete Composite Slab vol.919-921, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.919-921.602
  7. Nonlinear analysis of concrete-filled steel composite columns subjected to axial loading vol.39, pp.3, 2011, https://doi.org/10.12989/sem.2011.39.3.383
  8. Numerical analysis of the axially loaded concrete filled steel tube columns with debonding separation at the steel-concrete interface vol.13, pp.3, 2010, https://doi.org/10.12989/scs.2012.13.3.277
  9. Structural performance of frames with concrete-filled steel tubular columns and steel beams: Finite element approach vol.28, pp.None, 2010, https://doi.org/10.1177/2633366x19894593
  10. Nonlinear analyses of steel beams and arches using virtual unit moments and effective rigidity vol.33, pp.5, 2019, https://doi.org/10.12989/scs.2019.33.5.755
  11. Impact of aggregate content and tube thickness on semi‐lightweight aggregate concrete filled steel tube subjected to uniaxial compression vol.22, pp.6, 2010, https://doi.org/10.1002/suco.202100057