• Title/Summary/Keyword: nondestructive thickness measurement

Search Result 74, Processing Time 0.019 seconds

Water-Side Oxide Layer Thickness Measurement of the Irradiated PWR Fuel Rod by NDT Method

  • Park, Kwang-June;Park, Yoon-Kyu;Kim, Eun-Ka
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.680-686
    • /
    • 1995
  • It has been known that water-side corrosion of fuel rods in nuclear reactor is accompanied with the loss of metallic wall thickness and pickup of hydrogen. This corrosion is one of the important limiting factors ill the operating life of fuel rods. In connection with the fuel cladding corrosion, a device to measure the water-side oxide layer thickness by means of the eddy-current method without destructing the fuel rod was developed by KAERI. The device was installed on the multi-function testing bench in the nondestructive test hot-cell and its calibration was carried out successfully for the standard rod attached with plastic thin films whose thicknesses are predetermined. It shows good precision within about 10% error. And a PWR fuel rod, one of the J-44 assembly discharged from Kori nuclear power plant Unit-2, has been selected for oxide layer thickness measurements. With the result of data analysis, it appeared that the oxide layer thicknesses of Zircaloy cladding vary with the length of the fuel rod, and their thicknesses were compared with those of the destructive test results to confirm the real thicknesses.

  • PDF

Fiber Volume Fraction Measurement of Fiber Reinforced Plastics by Using Gamma-Ray (감마선을 이용한 복합재료의 섬유체적분율 측정)

  • Jang, J.H.;Cho, K.S.;Chang, H.K.;Park, J.H.;Lee, J.O.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.3
    • /
    • pp.151-155
    • /
    • 1997
  • In this research, nondestructive test using a radioisotope, $^{241}Am$ gamma-ray, was accomplished in order to evaluate the fiber volume fraction of the accumulated composite layers such as glass fiber/epoxy and carbon fiber/epoxy. Attenuation coefficients of the fiber and resin were measured respectively by NaI(T1) detector The fibers volume fraction was measured for various thickness of composite layers between 2 and 20mm. Fiber volume fraction of the composite layers were also measured for various amount of fibers. The experimental errors from nondestructive test using gamma-ray were in the range of ${\pm}1{\sim}2.5%$ in comparison with those from observation by optical microscopy. By selecting the optimum energy and activity of radioisotope, this method can provide a new means for the evaluation of the fiber volume fraction.

  • PDF

Investigation on Guided Wave Dispersion Characteristics for Metal Thin Films (금속 박막의 유도초음파 분산 특성 연구)

  • Kim, Miso;Cho, Seung Hyun;Jang, Gang-Won;Lee, Seung-Seok;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.233-240
    • /
    • 2014
  • In this study, we investigated the dispersion characteristics of guided waves in thin films. Dispersion curves are essential for understanding not only the behavior of ultrasonic waves, but also the mechanical properties of thin films. Matrix techniques are presented for modeling ultrasonic waves in multilayered structures before being used to calculate the dispersion curves for Al-steel and Al-composite specimens. When compared with the dispersion curves obtained using the commercial program (Disperse), the dispersion curves generated from the transfer matrix method show its validity. These developed methods are used to obtain dispersion curves for Al thin films deposited on a Si substrate. The resulting dispersion curves enable observation of both dispersive and non-dispersive behavior for the guided waves, depending on the thickness of the thin films.

Measuring Plate Thickness Using Spatial Local Wavenumber Filtering (국소 공간 웨이브넘버 필터링 기법을 이용한 평판 구조물 두께 측정)

  • Kang, To;Lee, Jeong Han;Han, Soon Woo;Park, Jin Ho;Park, Gyuhae;Jeon, Jun Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.370-376
    • /
    • 2016
  • Corrosion on the surface of a structure can generate cracks or cause walls to thin. This can lead to fracturing, which can eventually lead to fatalities and property loss. In an effort to prevent this, laser imaging technology has been used over the last ten years to detect thin-plate structure, or relatively thin piping. The most common laser imaging was used to develop a new technology for inspecting and imaging a desired area in order to scan various structures for thin-plate structure and thin piping. However, this method builds images by measuring waves reflected from defects, and subsequently has a considerable time delay of a few milliseconds at each scanning point. In addition, the complexity of the system is high, due to additional required components, such as laser-focusing parts. This paper proposes a laser imaging method with an increased scanning speed, based on excitation and the measurement of standing waves in structures. The wavenumber of standing waves changes at sections with a geometrical discontinuity, such as thickness. Therefore, it is possible to detect defects in a structure by generating standing waves with a single frequency and scanning the waves at each point by with the laser scanning system. The proposed technique is demonstrated on a wall-thinned plate with a linear thickness variation.

Study on Thickness Measurement about Insulation Rubber of Steel Motor Case Using Ultrasonic Resonance (초음파 공진을 이용한 스틸 연소관의 내열 고무 두께 측정 기법 연구)

  • Kim, Dong-Ryun;Kim, Jae-Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.89-96
    • /
    • 2012
  • The rubber side could be contaminated using the existing pulse echo method because the ultrasonic wave was incident on the rubber side from the interior of the steel motor case, which could lead to the critical disbond defect. To develop the test method which can be replaced the existing method, the ultrasonic wave was incident on steel face of the steel/rubber adhesive test block. Rubber resonance frequencies measured from the steel/rubber adhesive test block were in good agreement with theoretically predicted rubber resonance frequencies. This paper was described about the ultrasonic resonance method to convert the rubber resonance frequency into the rubber thickness.

Study on Thickness Measurement about Insulation Rubber of Steel Motor Case Using Ultrasonic Resonance (초음파 공진을 이용한 스틸 연소관의 내열 고무 두께 측정 기법 연구)

  • Kim, Dong-Ryun;Kim, Jae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.562-569
    • /
    • 2012
  • The rubber side could be contaminated using the existing pulse echo method because the ultrasonic wave was incident on the rubber side from the interior of the steel motor case, which could lead to the critical disbond defect. To develop the test method which can be replaced the existing method, the ultrasonic wave was incident on steel face of the steel/rubber adhesive test block. Rubber resonance frequencies measured from the steel/rubber adhesive test block were in good agreement with theoretically predicted rubber resonance frequencies. This paper was described about the ultrasonic resonance method to convert the rubber resonance frequency into the rubber thickness.

  • PDF

Determining the Thickness of a Trilayer Thin-Film Structure by Fourier-Transform Analysis (푸리에 변환을 이용한 3층 구조 박막의 두께 측정)

  • Cho, Hyun-Ju;Won, Jun-Yeon;Jeong, Young-Gyu;Woo, Bong-Ju;Yoon, Jun-Ho;Hwangbo, Chang-Kwon
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.4
    • /
    • pp.143-150
    • /
    • 2016
  • The thickness of each layer in a multilayered system is determined by a Fourier-transform method using spectroscopic reflectance measurements. To verify this method, we first generate theoretical reflectance spectra for three layers, and these are fast-Fourier-transformed using our own Matlab program. Each peak of the Fourier-transformed delta function denotes the optical thickness of each layer, and these are transformed to physical thicknesses. The relative thickness error of the theoretical model is less than 1.0% while a layer's optical thickness is greater than 730 nm. A PI-(thin $SiO_2$)-PImultilayeredstructure produced by the bar-coating method was analyzed, and the thickness errors compared to SEM measurements. Even though this Fourier-transform method requires knowing the film order and the refractive index of each layer prior to analysis, it is a fast and nondestructive method for the analysis of multilayered structures.

Characteristics of The 1-3 Piezoelectric Composite Transducer Manufactured by Dicing-Filling Method (Dicing-Filling 방법으로 제작된 1-3 압전복합변환자의 특성)

  • Kim, W.S.;Yun, U.H.;Ok, C.I.;Kim, S.B.;Lee, J.K.;Lee, J.O.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.1
    • /
    • pp.33-37
    • /
    • 2000
  • The 1-3 piezoelectric composite transducer with 75 volume percents PZT was fabricated by the dicing-filling method. The resonance modes of the 1-3 transducer have been studied with electric impedance measurement as a function of frequency. The fundamental frequencies of the planar and thickness mode were observed at 0.95MHz and 1.63MHz respectively, but the lateral mode was not observed. In the thickness mode, the electromechanical coupling coefficient of the 1-3 piezoelectric composite transducer, 0.54, was very closed to that of the single phase PZT(0.52). The pulse-echo response by exciting the 1-3 transducer with an electric pulse was observed from the water/reflector interface, and analyzed bandwidth by the spectrum of the impulse response. The quality factor Q for the 1-3 transducer was observed as 1.5 smaller than that of the single phase(80) and then the 1-3 transducer may be used to the broad band type transducer applications.

  • PDF

Eddy Current and Ultrasonic IRIS Signal Characteristics of Reboiler Tube by Using STS 316L Calibration Specimen (STS 316L 교정시험편을 이용한 재가열기 튜브의 와전류신호와 초음파 IRIS 신호 특성)

  • Tak, Kyeong-Joo;Kim, Byung-Il;Gook, Jin-Seon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.56-63
    • /
    • 2012
  • In this study, a field applicability of reboiler tube was evaluated by comparing ECT signal with IRIS signal about wall loss rate and remaining wall thickness using worked austenite STS 316L ASME standard calibration tube. In the case of wall-loss rate, as a result, tolerance about $20%{\times}4$ flat bottom hole and 10% O D groove(ECT), 80% defect and 10% O D groove(IRIS) occurred up to ${\pm}15%$. In the case of remaining wall thickness, ECT was satisfied with the both tolerance, but tolerance about 80% defect occurred up to ${\pm}15%$ in IRIS. Therefore, if the IRIS is performed for interpretation of non-relevant indication and measurement of wall-loss rate after ECT, reliability is supposed to be improved.

Study on the Feasibility of High-Temperature Immersion Ultrasonic Sensor with a Strip Waveguide (도파띠를 이용한 고온 액침 초음파센서의 가능성 연구)

  • Choi, M.S.;Lee, J.P.;Jung, T.E.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.14 no.3
    • /
    • pp.151-156
    • /
    • 1994
  • Exertion has been made to develop high-temperature (about $250{\sim}650^{\circ}C$) immersion ultrasonic sensor for the visualization of objects, temperature measurement, dimensional check, or nondestructive testing of welds under liquid sodium. In this study, the feasibility of the ultrasonic sensor taking advantage of a strip waveguide was confirmed by water-experiment. The lowest order of antisymmetric Lamb wave was used in the frequency range with negligible dispersion. This plate wave was excited in the stainless steel strip waveguide of 1.0mm thickness and 13mm width by the comb-structure transducer of 2.3MHz frequency. Its attenuation coefficient was 1.2dB/m in air and 380dB/m in water. The signal to noise ratio of 25dB was obtained from a planar reflector 270mm away from the beam aperture of $13mm{\times}39mm$ size.

  • PDF