DOI QR코드

DOI QR Code

Determining the Thickness of a Trilayer Thin-Film Structure by Fourier-Transform Analysis

푸리에 변환을 이용한 3층 구조 박막의 두께 측정

  • Received : 2016.06.14
  • Accepted : 2016.08.05
  • Published : 2016.08.25

Abstract

The thickness of each layer in a multilayered system is determined by a Fourier-transform method using spectroscopic reflectance measurements. To verify this method, we first generate theoretical reflectance spectra for three layers, and these are fast-Fourier-transformed using our own Matlab program. Each peak of the Fourier-transformed delta function denotes the optical thickness of each layer, and these are transformed to physical thicknesses. The relative thickness error of the theoretical model is less than 1.0% while a layer's optical thickness is greater than 730 nm. A PI-(thin $SiO_2$)-PImultilayeredstructure produced by the bar-coating method was analyzed, and the thickness errors compared to SEM measurements. Even though this Fourier-transform method requires knowing the film order and the refractive index of each layer prior to analysis, it is a fast and nondestructive method for the analysis of multilayered structures.

분광광도계로 측정된 반사율 데이터를 활용하여 다층박막 각 층의 두께를 푸리에 변환 방법으로 결정하였다. 이를 위하여 이론적인 3층 다층박막 반사율 데이터를 생성하고 자체 작성한 Matlab 프로그램으로 델타함수의 피크 발생위치로부터 각 층의 두께를 결정하였으며, 박막의 광학적 두께가 730 nm 이상이 되는 경우 결정된 두께 오차는 1.0% 이하임을 알 수 있었다. 이 방법을 사용하여 바 코팅 방법으로 제작된 PI-(얇은 $SiO_2$)-PI 다층박막의 두께를 결정하고 그 결과를 SEM 측정결과와 비교하였다. 본 두께측정 방법은 각 층의 굴절률과 박막의 순서를 미리 인지하고 있어야 하는 단점이 있으나, 비파괴적인 방법으로 빠르게 다층 박막의 두께 분포를 결정할 수 있는 방법임을 확인하였다.

Keywords

References

  1. J. C. Manifacier, J. Gasiot, and J. P. Fillard, "A simple method for the determination of the optical constant n, k and the thickness of weakly absorbing thin films," J. Phys. E 9, 1002 (1976) https://doi.org/10.1088/0022-3735/9/11/032
  2. J. Rivory, "Ellipsometric Measurements," in Thin Films for Optical Systems edited by F.R. Flory (Marcel Dekker Inc., 1995) chap.11.
  3. P. Hlubina, D. Ciprian, J. Lunacek, and M. Lesnak, "Dispersive white-light spectral interferometry with absolute phase retrieval to measure thin fim," Opt. Express 14, 7678 (2006). https://doi.org/10.1364/OE.14.007678
  4. P. G. Synder, Y. Xiong, J. A. Woollam. G. A. Al-Jumaily, and F. J. Gagliard, "Graded refractive index silicon oxynitride thin film characterized by spectroscopic ellipsometry," J. Vac. Sci. Technol. A 10, 1462 (1992). https://doi.org/10.1116/1.578266
  5. J. A. Doborowolski, F.C. Ho, and A. Waldorf, "Determination of optical constants of thin film coating material based on inverse synthesis," Appl. Opt. 22, 3192 (1983).
  6. Y. S. Ghim and S.W. Kim, "Thin-film thickness profile and its refractive index measurements by dispersive white-light interferometry," Opt. Express 14, 11885 (2006). https://doi.org/10.1364/OE.14.011885
  7. U. Schnell, R. Dandliker, and S. Gray, "Dispersive white-light interferometry for absolute distance measurement with dielectric multilayer system on the target," Opt. Lett. 21, 528 (1996). https://doi.org/10.1364/OL.21.000528
  8. S. Y. Kim, "Expressions for Ellipsometric constants of samples covered with two thick incoherent films," Korean Journal of Optics and Photonics 24, 92 (2013). https://doi.org/10.3807/KJOP.2013.24.2.092
  9. E. Hecht, Optics 2nd ed. p363-368 (Addsion-Wesley Publishing Company, Inc. 1987).