• Title/Summary/Keyword: nonautonomous system

Search Result 36, Processing Time 0.02 seconds

NOTE OF BEHAVIOR OF A COUPLED NONAUTONOMOUS ORDINARY DIFFERENTIAL EQUATION

  • Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.227-230
    • /
    • 1995
  • Stability of a coupled nonautonomous ordinary differential equation is investigated. Asymptotic convergence to zero of a part of state vector is additionally shown, otherwise only uniform stability could have been concluded by the Lyapunov direct method. Obtained results could be particularly useful in analysis of nonautonomous systems in which the invariance principle does not hold. An illustrating example is given.

  • PDF

ON STABILITY OF NONLINEAR NONAUTONOMOUS SYSTEMS BY LYAPUNOV'S DIRECT METHOD

  • Park, Jong-Yeoul;Phat, Vu-Ngoc;Jung, Il-Hyo
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.5
    • /
    • pp.805-821
    • /
    • 2000
  • The paper deals with asymtotic stabillity of nonlinear nonautinomous systems by Lyapunov's direct method. The proposed Lyapunov-like function V(t, x) needs not be continuous in t and Lipschitz in x in a Banach space. The class of systems considered is allowed to be nonautonomous and infinite-dimensional and we relax the boundedness, the Lipschitz assumption on the system and the definite decrescent condition on the Lyapunov function.

  • PDF

ENTROPY OF NONAUTONOMOUS DYNAMICAL SYSTEMS

  • Zhu, Yujun;Liu, Zhaofeng;Xu, Xueli;Zhang, Wenda
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.1
    • /
    • pp.165-185
    • /
    • 2012
  • In this paper, the topological entropy and measure-theoretic entropy for nonautonomous dynamical systems are studied. Some properties of these entropies are given and the relation between them is discussed. Moreover, the bounds of them for several particular nonautonomous systems, such as affine transformations on metrizable groups (especially on the torus) and smooth maps on Riemannian manifolds, are obtained.

THE E-EULER PROCESS FOR NONAUTONOMOUS SYSTEMS

  • Yu, Dong-Won
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.8 no.2
    • /
    • pp.87-93
    • /
    • 2004
  • The E-Euler process has been proposed for autonomous dynamical systems in [7]. In this paper, the E-Euler process is extended to nonautonomous dynamical systems. When a discrete function is bounded or gradually decreases to ${\epsilon}\;<<\;1$ as $n\;{\rightarrow}\;{\infty}$, it is shown that the relative error converges to a constant or decreases.

  • PDF

Chaos Control of the Pitch Motion of the Gravity-gradient Satellites in an Elliptical Orbit (타원궤도상의 중력구배 인공위성의 Pitch운동의 혼돈계 제어)

  • Lee, Mok-In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.137-143
    • /
    • 2011
  • The pitch motion of a gravity-gradient satellite can be chaotic, depending on the ratio of mass moments of inertia and the eccentricity of the satellite orbit. For a precise prediction of motion, chaotic pitch motion has to be changed to non-chaotic motion. Feedback control can be used to obtain nonchaotic pitch motion. For chaos control and stabilization of the pitch motion of a gravity-gradient satellite, a feedback control system is designed, based on the linear nonautonomous system obtained by linearizing the nonlinear pitch motion. The control law obtained has two parameters and is applied to chaotic nonlinear pitch motion. The nonlinear control system satisfies the proposed control objectives in the range of the nonchaotic parameter space.

ANALYSIS OF A NONAUTONOMOUS PREDATOR-PREY MODEL INCORPORATING A PREY REFUGE AND TIME DELAY

  • Samanta, G.P.;Garain, D.N.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.955-967
    • /
    • 2011
  • In this paper we have considered a nonautonomous predator-prey model with discrete time delay due to gestation, in which there are two prey habitats linked by isotropic migration. One prey habitat contains a predator and the other (a refuge) does not. Here, we have established some sufficient conditions on the permanence of the system by using in-equality analytical technique. By Lyapunov functional method, we have also obtained some sufficient conditions for global asymptotic stability of this model. We have observed that the per capita migration rate among two prey habitats and the time delay has no effect on the permanence of the system but it has an effect on the global asymptotic stability of this model. The aim of the analysis of this model is to identify the parameters of interest for further study, with a view to informing and assisting policy-maker in targeting prevention and treatment resources for maximum effectiveness.