Acknowledgement
Supported by : National Natural Science Foundation of China
References
- T. Bogenschutz and H. Crauel, The Abramov-Rokhlin formula, Ergodic theory and related topics, III (Gustrow, 1990), 32-35, Lecture Notes in Math., 1514, Springer, Berlin, 1992.
- A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54. Cambridge University Press, Cambridge, 1995.
- Y. Kifer and P.-D. Liu, Random dynamical systems, Handbook of Dynamical Systems, vol. 1B, eds, B. Hasselblatt and A. Katok, Elsevier, (2006), 379-499.
- S. Kolyada, M. Misiurewicz, and L. Snoha, Topological entropy of nonautonomous piecewise monotone dynamical systems on the interval, Fund. Math. 160 (1999), no. 2, 161-181.
- S. Kolyada and L. Snoha, Topological entropy of nonautonomous dynamical systems, Random Comput. Dynam. 4 (1996), no. 2-3, 205-223.
- P. D. Liu, Dynamics of random transformations: smooth ergodic theory, Ergodic Theory Dynam. Systems 21 (2001), no. 5, 1279-1319.
- P. D. Liu and M. Qian, Smooth Ergodic Theory of Random Dynamical Systems, Lect. Notes in Math. 1606, Springer, New York, 1995.
-
M. Misiurewicz, A short proof of the variational principle for a
$Z^N_+$ action on a compact space, International Conference on Dynamical Systems in Mathematical Physics (Rennes, 1975), pp. 147-157. Asterisque, No. 40, Soc. Math. France, Paris, 1976. - W. Ott, M. Stenlund, and Lai-sang Young, Memory loss for time-dependent dynamical systems, Math. Res. Lett. 16 (2009), no. 3, 463-475. https://doi.org/10.4310/MRL.2009.v16.n3.a7
- P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, New York, Heidelberg, Berlin, 1982.
- J. L. Zhang and L. X. Chen, Lower bounds of the topological entropy for nonautonomou dynamical systems, Appl. Math. J. Chinese Univ. Ser. B 24 (2009), no. 1, 76-82. https://doi.org/10.1007/s11766-009-2013-7
- J. L. Zhang, Y. J. Zhu, and L. F. He, Preimage entropy for nonautonomous dynamical systems, Acta Math. Sinica 48 (2005), no. 4, 693-702.
- Y. J. Zhu, Growth in topological complexity and volume growth for random dynamical systems, Stoch. Dyn. 6 (2006), no. 4, 459-471. https://doi.org/10.1142/S0219493706001827
- Y. J. Zhu, Preimage entropy for random dynamical systems, Discrete Contin. Dyn. Syst. 18 (2007), no. 4, 529-551.
- Y. J. Zhu, On local entropy of random transformations, Stoch. Dyn. 8 (2008), no. 2, 197-207. https://doi.org/10.1142/S0219493708002275
- Y. J. Zhu, Z. Li, and X. H. Li, Preimage pressure for random transformations, Ergodic Theory Dynam. Systems 29 (2009), no. 5, 1669-1687. https://doi.org/10.1017/S0143385708000758
- Y. J. Zhu, J. L. Zhang, and L. F. He, Topological entropy of a sequence of monotone maps on circles, J. Korean Math. Soc. 43 (2006), no. 2, 373-382. https://doi.org/10.4134/JKMS.2006.43.2.373
Cited by
- On the topological entropy of a semigroup of continuous maps vol.427, pp.2, 2015, https://doi.org/10.1016/j.jmaa.2015.02.082
- On an entropy of ℤ + k -actions vol.30, pp.3, 2014, https://doi.org/10.1007/s10114-014-2357-7
- Quasistatic dynamical systems 2017, https://doi.org/10.1017/etds.2016.9
- Directional entropy of ℤ+k-actions vol.16, pp.01, 2016, https://doi.org/10.1142/S0219493716500040
- Topological pressure for nonautonomous systems vol.76, 2015, https://doi.org/10.1016/j.chaos.2015.03.010
- Estimations of topological entropy for non-autonomous discrete systems vol.22, pp.3, 2016, https://doi.org/10.1080/10236198.2015.1107055
- Variational Principles for Entropies of Nonautonomous Dynamical Systems 2017, https://doi.org/10.1007/s10884-017-9586-2
- On the topological entropy of free semigroup actions vol.435, pp.2, 2016, https://doi.org/10.1016/j.jmaa.2015.11.038
- Metric Entropy of Nonautonomous Dynamical Systems vol.1, pp.1, 2014, https://doi.org/10.2478/msds-2013-0003
- Topological and Measure-Theoretical Entropies of Nonautonomous Dynamical Systems 2016, https://doi.org/10.1007/s10884-016-9554-2
- Relationships among some chaotic properties of non-autonomous discrete dynamical systems vol.24, pp.7, 2018, https://doi.org/10.1080/10236198.2018.1458101