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THE E-EULER PROCESS FOR NONAUTONOMOUS SYSTEMS

DONG WON YU

ABSTRACT. The E-Euler process has been proposed for autonomous dynamical sys-
tems in [7]. In this paper, the E-Euler process is extended to nonautonomous dynam-
ical systems. When a discrete function is bounded or gradually decreases to € <<'1
as n — 00, it is shown that the relative error converges to a constant or decreases.

1. INTRODUCTION
The nonlinear autonomous systems of the form
(1.1) x'(t) = £f(x(t)) = Jx(t) + g(x(t)), x(0)=x0€R™, t=>0,

where f(0) =0 and J = a%f (0), are considered in (7] and [8]. The eigenvector matrix
of J, the s-matrix, the s-transformed system, and the exponential Euler process have
been introduced in [7] and (8] as follows :

(1) The eigenvector matrix P is given by
P =1[Vi,...,Vp, W1, Vpil, .., Wq, Vpigl,
where v; (j =1,...,p) and vy, iwg(k=1,...,q) are eigenvectors of J.
(2) The s-matrix is given by
1 ~
(1.2) 55a1+5(s—§’f),

where P~1JP = S+ N , S is semisimple, N is nilpotent, SN = NS and
a = a[J] is the largest real part of eigenvalues of J.
(3) By x(t) = Py(t), the problem (1.1) is transformed into

(1.3) y'(t) = Sy(t) + u(y(t)), y(0)=P 'xo,

where u(y) = (S-S + N)y + P~ 1g(Py).
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For S # O, the system (1.3) or (1.1) is called an ezponentially dominant
system, if the solution to the nonlinear system (1.3) asymptotically follows the
solution to the corresponding linear part y'(t) = Sy(t) as t tends to infinity.

(4) Applying y(t) = exp(tS)z(t) to the exponentially dominant system (1.3), we
have an initial value problem for z(t) ([3]):

(1.4) z'(t) = exp(—tS)u(exp(tS)z(t)), =z(0)= P~ 1xq.

(5) By the Euler method and z,, = exp(—t,S)yn , the E-Euler process (exponential
Euler process) is obtained:

(1-5) Yn+1 = eXp(h'S){Yn + hu(Yn)}a Xnt1 = Pynt1, tnt1=1tn+ h.

It is shown that

(1) The E-Euler process is efficient to the exponentially dominant systems (see [7]
and [8]).

(2) Since the matrix exponential exp(hS) is exactly computed (see [5],[6]), the
process (1.5) is based on the precise computation of matrix exponential.

(3) In [7], the implementation of E-Euler process has been discussed and the process
is compared with RKSUITE which is developed by Brankin, Gladwell and
Shampine [1].

(4) The E-Euler process nicely recover the long term behavior for oscillatory prob-
lems than the classical Runge-Kutta method and RKSUITE.

(5) In [8], the E-Euler process is unconditionally contractive on some subclasses
of the dissipative exponentially dominant systems, and unconditionally non-
contractive on some subclasses of the nondissipative exponentially dominant
systems.

(6) In [8], the relative errors of the approximation obtained by the E-Euler process
can be estimated by a function exp(—tS)u(y(t)).

In this paper, we will extend the E-Euler process (1.5) to the nonautonomous dy-
namical systems.

2. EXTENSION OF THE PROCESS

Let us consider the nonautonomous dynamical systems
(2.1) x'(t) = £(¢,x(t)), x(to) = %o,

where f(t,-) : M; — R™ is twice continuously differentiable with respect to x, and
M; C R™ is the convex region which is defined in [2]. We assume that %f (0,0) does
not vanish.

Since f(t,x(t)) is twice continuously differentiable with respect to x, it is repre-
sented as

—8—f(t, 0)x(¢) + r(t, x(t)),

f(t,x(t)) =£(¢,0) + %
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where r(t,x(t)) is the remainder. Then (2.1) is divided into two parts:
(2:2) x'(t) = Jx(t) + g(t, x(t)), x(to) = %o,

where the (4, j) component of JJ is the constant term of the (¢, j) component of a%f (t,0)
and

o ~
g(t,x()) = £(8,0) + (=£(t,0) = J)x(8) + r{t, x(1)).
ox
For an eigenvector matrix P of J , the real canonical form of J is given by
(2.3) P1jP=8+N,

where S is a canonical semisimple matrix, N is nilpotent and SN = N§. Then, an

s-matrix S is given by

- - -
S—aI+§(S—S), where « = alJ).

By using x(t) = Py(t) and S, the problem (2.2) is transformed to
(2.4) Y'(t) = Sy(t) +u(t,y(t), y(0)=P 'xo,
where

u(t,y) = (PLJP - §) y(t) + P~ g(t, Py(1))-

The system (2.4) is called an s-transformed system of (2.1). For S # O, the system
(2.1) or (2.4) is called an exponentially dominant system, if the solution to the nonlinear
system (2.4) asymptotically follows the solution to the corresponding linear part y'(t) =
Sy(t) as t tends to infinity.

Applying y(t) = exp(tS’)z(t) to the exponentially dominant system (2.4), we have
an initial value problem for z(t)

(2.5) 2/ (t) = exp(—tS)u(t, exp(tS)z(t)), z(tn) = exp(~tnS)Yn.
Apply Euler method to (2.5). Then we have
(2.6) Znt1 = Zn + hexp(—tnS)u(tn, exp(tnS)zy).
Applying z, = exp(—t,5)yn to (2.6), we arrive at
(2.7) Yna1 := exp(hS) {yn + hu(ty, ¥Yn)}-
Finally, the numerical solution of (2.1) is obtained by

X, = Py, for n=1,2,3,---.

Such a process is called an exponential Euler process (E-Euler process) for nonau-
tonomous systems.
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3. NUMERICAL EXAMPLES

In order to test the accuracy of the exponential Euler process, we consider the relative
error (see [8]) defined by the elliptic vector norm in x-space and the Euclidean norm
in y-space:
lx(tn) - xnIP _ |Y(tn) - ynl

|%(tn)|P ly(ta)l

(3.1) prn = p(n;h) =

and the linear part of u(¢,y(t)):

1 0

(3.2) w(t,y(t) = (P“ —£(t,0)P - S)y(t).

Two examples are tested by the Euler method (Euler), the E-Euler process (E-Euler)
and Template 3a of RKSUITE. The programs were compiled using Visual Fortran
and executed on a personal computer (Pentium III) with smallest positive number
approximately 2.223D-308 and the unit of roundoff approximately 1.0D-16.

3.1. Problem 1 ([4]). Consider the nonautonomous linear system

r_ _ —1+ ycos?(t) 1 — vy sin(t) cos(t)
(3.3) x'=Alt)x = (—1 - Ws?n(t) cos(t) —17—}- ysin®(t) ) *

The eigenvalue of A(t) are time independent and given by

1
e =5 —25 VA2 -9,

Retative Error

= Euler
== E-Eler
-+ RKSUITE

Time

25

Relative Error
=
=)

~—— Euler
== E-Euler
« - RKSUITE

1 1.5 2
Time

25 3

(a) y=1.5 (b) y=0.8

FIGURE 1. Graphs of p(n;0.01).

We have Re(Ai) < 0 if 4 < 2. Next, we apply a coordinate transformation such
* that the new coordinate frame rotate as time ¢ evolves:

(0= Qs = (39 om0
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FIGURE 2. Graphs of p(n;0.01) and w(n;0.01).

vy—1 0
(5" &)
So, the solution of (3.3) is given by

(2 = (<) +e (S50).

Hence, y, and thus x, is Lyapunov stable for ¥ = 1. For v < 1 we even find
asymptotic stability, while for v > 1 the system is unstable. The real part of Ai,
given above, did not suggest this.

For the system (3.3), take the s-matrix S and its eigenvector matrix P as follows:

(3.5) S=J= (j _11) and P=1.

Then, the s-transformed system of (3.3) is given by

(-1 1 7 cos?(t) —~ sin(t) cos(t)
(3.6) y = (—1 —1) y+ <—-7 sin(t) cos(t) ~ sin®(t) Y
and the discrete function of the linear part of u(t,y(t)) is given by

oy 7y cos?(tn) — sin(t,) cos(tn)
win;h) = (——'y sin(ty, ) cos(ty) ~sin?(t,) ) Yo

The problem is examined for h = 0.01, a = —-1.0, 8 = —-1.0, ¢; = 1.0, ¢ = 1.0,
to = 1.0, 710 = z1(to) and x29 = x2(tg). If the discrete function w(n;0.01) is
gradually increases (see Figure 2 (b) for v = 1.5), the relative error of E-Euler is
greater than Euler (see Figure 1 (a)). If the discrete function is gradually decreases
(see Figure 2 (b) for v = 0.8 and v = 0.1), the relative error of E-Euler is smaller
than Euler (see Figure 1 (b) and Figure 2 (a)).

Then, y(t) satisfies the equation

(3.4) Y = Q)AMQ )y
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3.2. Problem 2. Consider a nonlinear nonautonomous system

i T\ _ %cos t+ 1 s1n 7 %sintcost—l
dt \z2/ 1 smtcost +1 %sin2 t+ l cos? t
4 <t12 cost(acl cost

tlz sint(xy cost

The exact solution of the above equation is given by

-

za(t) = (=

t2

z1(t) a—t) cost — (t{lnt+b

2

2 cos? t+ sm t

1 .
K3 _ 3 ?smtcost—
Since 5 <E(6,0) < —smtcost+ 1

%sin2 t+ %cos

) ()

+ x9sin t) — sin t)

+ xosint)? + cost

}) sint,

t) sint + (¢ {lnt + b}) cost.

%t),wehave J=

@
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FIGURE 3. Relative errors obtained by Euler, E-Euler, Runge-Kutta

and RKSUITE.
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Hence, S = J and P = I. Using the function x(t) = Py(t), the problem becomes

d (y\ _ (0 -1\ (n + %cos2t+%sin2t %sintcost Y1
dt\y2) \1 O Y2 %sintcost %sin2t+%coszt Y2
;15 cost(yy cost + yosint)? — sint

tlzsint(ylcost-i-yzsint +cost)’

)2
The discrete function of the linear part of u(t,y(t)) is given by

2 o2 1 o2 1
= cos”t, + ;-sin“t, = sint, cost 7n

'h — tn n tn 7 tn n n ,n .
w(n;h) ( i sint,, cost, ;2"— sin® t,, + %'1; cos?t, ) \Y2n
Numerical results is obtained for h = 1.0, a =0.0, 3 =1.0, t; = 1.0, a = -1.0,
b=1.0, zog = x(1.0), and yo = y(1.0). Figure 3 represents the relative errors obtained
by Euler, E-Euler, the classical Runge-Kutta and RKSUITE. The discrete function
w(n;1.0) is bounded. The Euler method and the classical Runge-Kutta method over-

flow and can not work for h = 1.0. E-Euler process is more efficient than RKSUITE.

3.3. Concluding Remark. Based on the examples given in this paper and on many
other examples, we have the following information:

When the discrete function w(n;h) is bounded or gradually decreases to € << 1

as n — 0o, the relative error obtained by E-Euler process converges to a constant or
decreases as n — oo.
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