• 제목/요약/키워드: non-proportionally damped system

검색결과 8건 처리시간 0.023초

Blind modal identification of output-only non-proportionally-damped structures by time-frequency complex independent component analysis

  • Nagarajaiah, Satish;Yang, Yongchao
    • Smart Structures and Systems
    • /
    • 제15권1호
    • /
    • pp.81-97
    • /
    • 2015
  • Recently, a new output-only modal identification method based on time-frequency independent component analysis (ICA) has been developed by the authors and shown to be useful for even highly-damped structures. In many cases, it is of interest to identify the complex modes of structures with non-proportional damping. This study extends the time-frequency ICA based method to a complex ICA formulation for output-only modal identification of non-proportionally-damped structures. The connection is established between complex ICA model and the complex-valued modal expansion with sparse time-frequency representation, thereby blindly separating the measured structural responses into the complex mode matrix and complex-valued modal responses. Numerical simulation on a non-proportionally-damped system, laboratory experiment on a highly-damped three-story frame, and a real-world highly-damped base-isolated structure identification example demonstrate the capability of the time-frequency complex ICA method for identification of structures with complex modes in a straightforward and efficient manner.

Step Length를 이용한 비비례감쇠시스템의 고유치 해석 (Application of Step Length Technique To An Eigensolution Method for Non-proportionally Damped Systems)

  • Thanh X. H;Kim, Byoung-Wan;Jung, Hyung-Jo;Lee, In-Won
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.481-490
    • /
    • 2003
  • This paper presents an efficient eigensolution method for non-proportionally damped systems. The proposed method is obtained by applying the accelerated Newton-Raphson technique and the orthonormal condition of the eigenvectors to the linearized form of the quadratic eigenproblem. A step length and a selective scheme are introduced to increase the convergence of the solution. The step length can be evaluated by minimizing the norm of the residual vector using the least square method. While the singularity may occur during factorizing process in other iteration methods such as the inverse iteration method and the subspace iteration method if the shift value is close to an exact eigenvalue, the proposed method guarantees the nonsingularity by introducing the orthonormal condition of the eigenvectors, which can be proved analytically. A numerical example is presented to demonstrate the effectiveness of the proposed method.

  • PDF

A Method for Checking Missed Eigenvalues in Eigenvalue Analysis with Damping Matrix

  • Jung, Hyung-Jo;Kim, Dong-Hyawn;Lee, In-Won
    • Computational Structural Engineering : An International Journal
    • /
    • 제1권1호
    • /
    • pp.31-38
    • /
    • 2001
  • In the case of the non-proportionally damped system such as the soil-structure interaction system, the structural control system and composite structures, the eigenproblem with the damping matrix should be necessarily performed to obtain the exact dynamic response. However, most of the eigenvalue analysis methods such as the subspace iteration method and the Lanczos method may miss some eigenvalues in the required ones. Therefore, the eigenvalue analysis method must include a technique to check the missed eigenvalues to become the practical tools. In the case of the undamped or proportionally damped system the missed eigenvalues can easily be checked by using the well-known Sturm sequence property, while in the case of the non-proportionally damped system a checking technique has not been developed yet. In this paper, a technique of checking the missed eigenvalues for the eigenproblem with the damping matrix is proposed by applying the argument principle. To verify the effectiveness of the proposed method, two numerical examples are considered.

  • PDF

감쇠시스템을 위한 개선된 Sturm 수열 성질 (Modified Sturm Sequence Property for Damped Systems)

  • Jo, Ji-Seong;Lee, Chong-Won;Lee, In-Won
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.34-41
    • /
    • 2001
  • Most of the eigenvalue analysis methods for the undamped or proportionally damped systems use the well-known Sturm sequence property to check the missed eigenvalues when only a set of the lowest modes is to be used for large structures. However, in the case of the non-proportionally damped systems such as the soil-structure interaction system, the structural control system and the composite structures, no counterpart of the Sturm sequence property for undamped systems has been developed yet. Hence, when some important modes are missed for those systems, it may leads to poor results in dynamic analysis. In this paper, a technique for calculating the number of eigenvalues inside the open disk of arbitrary radius for the eigenproblem with the damping matrix is proposed by applying Chen's algorithm and Gleyse's theorem. To verify the applicability of the proposed method, two numerical examples are considered.

  • PDF

중복 또는 근접 고유치를 갖는 비비례 감쇠 구조물의 자유진동 해석 (Free Vibration Analysis of Non-Proportionally Damped Structures with Multiple or Close Frequencies)

  • 김만철;정형조;박선규;이인원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.431-438
    • /
    • 1998
  • An efficient solution method is presented to solve the eigenvalue problem arising in tile dynamic analysis of non-proportionally damped structural systems with multiple or close eigenvalues. The proposed method is obtained by applying the modified Newton-Raphson technique and the orthonormal condition of the eigenvectors to the quadratic eigenvalue problem. Even if the shift value is an eigenvalue of the system, the proposed method guarantees nonsingularity, which is analytically proved. The initial values of the proposed method can be taken as the intermediate results of iteration methods or results of approximate methods. Two numerical examples are also presented to demonstrate the effectiveness of the proposed method and the results are compared with those of the well-known subspace iteration method and the Lanczos method.

  • PDF

비비례 진동감쇠를 갖는 선형 동역학계의 스펙트럴 해석법 (Spectral Analysis Method for the Multi-DOFs Dynamic Systems with Non-Proportional Damping)

  • 조주용;김성환;이우식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.411-416
    • /
    • 2004
  • This paper introduces a fast Fourier transform (FFT)-based spectral analysis method for the transient responses as well as the steady-state responses of linear dynamic systems with non-proportional damping. The force vibration of a non-proportionally damped three-DOF system is considered as the illustrative numerical example. The proposed spectral analysis method is evaluated by comparing with the numerical solution obtained by the Runge-Kutta method

  • PDF

중복근을 갖는 감쇠 시스템의 고유진동수와 모드의 민감도 (Natural Frequency and Mode Shape Sensitivities of Damped Systems with Multiple Natural Frequencies)

  • 최강민;고만기;이인원
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.117-124
    • /
    • 2001
  • A simplified method fur the eigenpair sensitivities of damped system with multiple eigenvalues is presented. This approach employs a reduced equation to determine the sensitivities of eigenpairs of the damped vibratory systems with multiple natural frequencies. In the proposed method, adjacent eigenvectors and orthonormal conditions are used to compute an algebraic equation whose order is (n+m)x(n+m), where n is the number of coordinates and m the number of multiplicity of multiple natural frequencies. The proposed method is an improved Lee and Jung's method which was developed previously. Two equations are used to find eigenvalue derivatives and eigenvector derivatives in Lee and Jung's method. A significant advantage of this approach over Lee and Jung's method is that one algebraic equation newly developed is enough to compute such eigenvalue derivatives and eigenvector derivatives. This method can be consistently applied to both structural systems with structural design parameters and mechanical systems with lumped design parameters. To demonstrate the theory of the proposed method and its possibilities in the case of multiple eigenvalues, the finite element model of the cantilever beam and 5-DOF mechanical system in the case of a non-proportionally damped system are considered as numerical examples. The design parameter of the cantilever beam is its height. and that of the 5-DOF mechanical system is a spring.

  • PDF

중복근을 갖는 감쇠 시스템의 고유진동수와 모드의 민감도 (Natural Frequency and Mode Shape Sensitivities of Damped Systems with Multiple Natural Frequencies)

  • 최강민;이종헌;이인원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.515-522
    • /
    • 2001
  • A simplified method is presented for the computation of eigenvalue and eigenvector derivatives associated with repeated eigenvalues. In the proposed method, adjacent eigenvectors and orthonormal conditions are used to compose an algebraic equation whose order is (n+m)x(n+m), where n is the number of coordinates and m is the number of multiplicity of the repeated eigenvalue. One algebraic equation developed can be computed eigenvalue and eigenvector derivatives simultaneously. Since the coefficient matrix of the proposed equation is symmetric and based on N-space, this method is very efficient compared to previous methods. Moreover the numerical stability of the method is guaranteed because the coefficient matrix of the proposed equation is non-singular, This method can be consistently applied to both structural systems with structural design parameters and mechanical systems with lumped design parameters. To verify the effectiveness of the proposed method, the finite element model of the cantilever beam and a 5-DOF mechanical system in the case of a non-proportionally damped system are considered as numerical examples. The design parameter of the cantilever beam is its width, and that of the 5-DOF mechanical system is a spring.

  • PDF