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ABSTRACT

In the case of the non-proportionally damped system such as the soil-structure interaction system, the structural control system
and composite structures, the eigenproblem with the damping matrix should be necessarily performed to obtain the exact dynamic
response. However, most of the eigenvalue analysis methods such as the subspace iteration method and the Lanczos method may
miss some eigenvalues in the required ones. Therefore, the eigenvalue analysis method must include a technique to check the
missed eigenvalues to become the practical tools. In the case of the undamped or proportionally damped system the missed eigenvalues
can easily be checked by using the well-known Sturm sequence property, while in the case of the non-proportionally damped
system a checking technique has not been developed yet. In this paper, a technique of checking the missed eigenvalues for the
eigenproblem with the damping matrix is proposed by applying the argument principle. To verify the effectiveness of the proposed

method, two numerical examples are considered.
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1. Introduction

Most of the eigenvalue analysis methods such as the
subspace iteration method and the Lanczos method may
miss some eigenpairs in the required ones, because the
methods do not calculate the complete eigenvector set of a
structure but the lowest small portion of this set. The exact
dynamic response cannot be obtained by using the lowest
incomplete eigenvectors. For the practical eigenvalue anal-
ysis method, a technique to check the missed eigenvalues
must be included.

The well-known Sturm sequence property has hitherto
been applied to check the missed eigenvalues (Bathe,
1996; Meirovitch, 1980; Petyt, 1990; Huyhes, 1987). The
technique using the Sturm sequence property is used in
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the commercial finite element computer program such
as ADINA. However, this technique can only be applied
to the eigenproblem without the damping matrix such as
the cases of the undamped and proportionally damped
system (Newland, 1989).

In the case of the non-proportionally damped system
such as the soil-structure interaction system, the structural
control system and composite structures, the eigenproblem
with the damping matrix should be analyzed to obtain the
exact dynamic response. A number of researches®!® have
been performed to solve the eigenproblem with the damp-
ing matrix, whereas there have been few studies on a tech-
nique to check the missed eigenvalues in this case in the
literature.

If the technique using the Sturm sequence property can
be expanded to the eigenproblem with the damping
matrix, the missed eigenvalues for structures with non-pro-
portional damping can easily be checked by this technique.
However, since the Sturm sequence property was basically
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derived to count the number of roots of a polynomial in
real domain, it cannot be directly applied to the eigen-
problem having the complex eigenvalues. Tsai and Chen
(1993) proposed the extended Sturm sequence property to
count the number of roots of a polynomial in complex
domain. The technique proposed by Tsai and Chen has to
know all the coefficients of the polynomial, which needs a
large number of operations. Hence, the technique cannot
be applied to the characteristic polynomial of the large
eigenproblem.

In this paper, the argument principle (Carrier er al.,
1966; Henrici, 1974; Korn and Korn, 1968; Spiegel, 1964;
Franklin er al., 1994) which can count the number of the
eigenvalues inside a simple closed contour in complex
plane, is used to check the missed eigenvalues for eigen-
problem with the damping matrix. And, by using the iter-
ative approach in which one discretizes the contour into a
set of checking points and calculates the argument at each
checking point by the LDLT factorization process, a tech-
nique of checking the missed eigenvalues for large eigen-
problem is developed.

This paper organized as follows. A technique using the
argument principle is presented and considerations of the
proposed method are discussed in Chapter 2. In Chapter 3,
numerical examples are analyzed to verify the effective-
ness of the proposed method. Finally, the concluding
remarks and further studies are expressed in Chapter 4.

2. Technique Of Checking Missed Eigenvalues

2.1 Theory

The eigenpairs of the non-proportionally damped system
can be obtained by solving the following eigenproblem
with the damping matrix:

M@+ A,Co+ K, = 0 (1)

where M, C, and K are the n by n mass, damping and stiff-
ness matrices, respectively, A, the ith eigenvalue and ¢, the
corresponding eigenvector.

As mentioned earlier, a technique of checking the
missed eigenvalues for the above quadratic eigenproblem
has not been developed yet. Now, by applying the argu-
ment principle, a technique of checking the missed eigen-
values is proposed.

First, let us consider the relationship between the
eigenvalues of an eigenproblem and the zeros of the cor-
responding characteristic polynomial. That is, the eigen-
values of the quadratic eigenproblem as Eq. (1) are
equal to the zeros of the following characteristic poly-
nomial:

AA) = det(A* M+ AC+K)
=ag+a A" ety A 4 ay, A (2)

where A is complex value and ai(i=0,1,...,2n) the real
coefficients.

And, the argument principle (Carrier et al., 1966; Hen-
rici, 1974; Korn and Korn, 1968; Spiegel, 1964; Franklin
et al., 1994) can be applied to the above characteristic
polynomial as follows: if the polynomial f{1) is analytic
inside and on a simple closed contour S, the following
equation is introduced

_ L fA),,_46
N= 2m‘f¥s fA) di = 2 3

where N is the number of zeros of ¢(A) inside the contour
S and A the variation of the argument 6 of ¢(A) around
the contour S.

Eq. (3) means that a polynomial f{(A) maps a moving
point A describing the contour S into a moving point f(4)
that encircles the origin of the f(A) -plane N times if the

* : zeros of f{A)
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polynomial (1) has N zeros inside the contour S in the A-
plane. As seen from Fig. 1, a moving point f(1) encircles
the origin of the f(A) -plane four times because the poly-
nomial f(A) has four zeros inside the contour S in the
f(A) -plane.

However, since it is impossible to directly find the char-
acteristic polynomial of the large eigenproblem by using the
symbolic algebraic operations, the numerical, or the iterative,
approach is needed to apply the aforementioned argument
principle to the large eigenproblem with the damping matrix.
The following two strategies are introduced to perform the
iterative approach. The first strategy is the discretization of
the simple closed contour S, and the second one the rela-
tionship between the characteristic polynomial and the fac-
torized matrices by the LDLT factorization process. That is,
the contour S is considered as the set of the checking points
as described in Fig. 2. And, the LDLT factorization process is
performed at each checking point. Then, the argument at
each checking point can calculate as follows (Korn and
Korn, 1968; Pearson, 1974):

fA) = det(A;M+2;C+K) = detLDL” = [[d;; = r;Z6,

i=1

“

where d;; is the diagonal elements of the diagonal matrix
D, and r; and 6; the magnitude and argument of the value
f(4;) in polar form, respectively. The number of the eigen-
values inside the contour S is calculated by summing the
variation of the argument of each checking point.

The process of checking the missed eigenvalues using
the argument principle is briefly described in Fig. 2. First,
we check the upper-half plane along the arc in coun-
terclockwise (1). And then we perform the LDL" fac-
torization at each checking point. The checking process in
the real axis can skip because of no variation of the argu-
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ment (2). The total variation of the arguments is calculated
by summing the variation of the argument of each check-
ing point. Finally, we check the missed eigenvalues to
compare the total rotation number (¥ in Eq. (3)) with the
number of the considered eigenvalues. The shape and size
of the simple closed contour S and the number of checking
points are discussed in detail in the next section.

2.2 Considerations

2.2.1 Shape and Size of the Simple Closed Contour

In applying the proposed method to a practical problem,
it is very important to properly choose the shape and the
size of the simple closed contour S. First, let us consider
the shape of the contour S. The simplest shape of the con-
tour is a circle as shown in Fig. 3(a). Since the eigenvalues
are always complex conjugate pairs in the case of the
underdamped system, the contour can be considered only
in the upper half-plane as in Fig. 3(b). In the case of the
stable structures, all the eigenvalues exist in the left half-
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Fig, 2. Process of checking the missed eigenvalues using the argu-
ment principle.
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plane. We, therefore, can consider only in the second quar-
ter-plane as in Fig. 3(c). In the case of the lightly damped
system, however, the contour as in Fig. 3(c) causes the
difficulties in the argument jump because the part of the
contour along the imaginary axis passes very close to the
eigenvalues. As seen from the above discussion, we con-
clude that a half-circle and a line on the real axis as in
Fig. 3(b) are the most appropriate contour to check the
missed eigenvalues for an eigenproblem with the damp-
ing matrix.

The size of the contour, i.e., the radius of a half-circle as
in Fig. 3(b) should be only a very little larger than the larg-
est eigenvalue to be considered to ensure that the next larg-
est eigenvalue is not within the contour. However, if the
difference between the radius of the half-circle and the
magnitude of the largest eigenvalue is too small, the argu-
ment jump occurs in the part of the contour that is close to
the largest eigenvalue. To exactly check the missed eigen-
values, therefore, it is important to properly choose the
size of the contour. The Sturm sequence check proposed
by Bathe (1996) has used 1.01 times the magnitude of the
largest eigenvalue for the eigenproblem without the damp-
ing matrix. As the results from analyzing several eigen-
problems with the damping matrix, however, the value
used by Bathe (1996) is too large to ensure that the next
largest eigenvalue is not within the contour. In the pro-
posed method, therefore, the size of the contour is cho-
sen by 1.005 times the magnitude of the largest
eigenvalue, and the part of the contour close to the larg-
est one is subdivided to check the drastic variation of the
argument without any difficulty.

2.2.2 Number of Checking Points

If checking points are chosen sufficiently a lot, the
missed eigenvalues can exactly be checked by the pro-
posed method. Using more checking points, however, will
increase the computational effort. Since the optimal num-
ber of checking points cannot be obtained by analytic
operations, the optimal value should be found by results of
analyzing the numerous numerical examples. Through five
numerical examples with 50 to 1018 degrees of freedom,
we have found that six times the number of eigenvalues
considered is the most effective. Only the two of them are
shown as numerical examples. After the contour is equally
divided into checking points, the part of the contour close
to the largest eigenvalue is subdivided because the argu-
ment jump occurs in the part of the contour close to an
eigenvalue. And, if the drastic change of the variation of
the argument between two adjacent checking points may
occur, the extra checking points between two adjacent
checking points should be added. The further study on the

Table 1. Algorithm of the proposed method
(g: number of calculated eigenvalues, p: number of considered
eigenvalues (p = g/2)).

Step 1: Calculate the size of the contour, p.
- Select 1.005 times the magnitude of the gth eigenvalue
(p = 1.005|4,]).
Step 2: Determine the initial checking points.
- Divide the contour into 6p equal parts.
- If necessary, subdivide the part of the contour that is
close to an eigenvalue.
Step 3: Perform the checking process.
- Perform the LDLT factorization at each checking point.
- Calculate the argument 6, at each checking point.
Step 4: Analyze the variations of the arguments.
- If an aggressive variation of the argument occurs at a
checking point, then go to Step 5 and if not, go to Step
6.
Step 5: Add the extra checking points.
- Go to Step 3.
Step 6: Check the missed eigenvalues.
- Calculate the total variation of the argument and the
number of rotations.
- Compare the number of rotations (¥ in Eq. (3)) with
the number of considered eigenvalues (p).

optimal number of checking points is now in progress. As
seen from the above discussion, the algorithm of the pro-
posed method can be expressed in Table 1.

3. Numerical Examples

To show the effectiveness of the proposed method, two
numerical examples are analyzed. First, a simple spring-
mass-damper system that has the correct analytical eigen-
values is considered to verify that the proposed method
can exactly check the missed eigenvalues of the eigen-
problem with the damping matrix. And the three-dimen-
sional frame structure is considered to verify that the
proposed method can be applied to large structural sys-
tems in practice.

3.1 Simple Spring-Mass-Damper System

The finite element discretization of the system results in
a diagonal mass matrix, a tridiagonal damping and stiff-
ness matrices of the following forms

M=ml &)

C=oM+pK 6)



Hyung-Jo Jung, Dong-Hyawn Kim and In-Won Lee

Table 2. The lowest six eigenvalues by analytical solutions.
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Table 3. The arguments and the variations of the arguments.

Mode Number Eigenvalues . First checking process ZA 0.
Real Imaginary A 0, A6, Y/N /

1 —0.02524 +0.01817 origin 0.0 - - 0.0

2 -0.02524 -0.01817 p£10° 108.9 108.9 N 108.9

3 —0.02718 +0.08923 pL20° 215.4 106.5 N 215.4

4 ~0.02718 —0.08923 pL30° 316.5 101.1 N 316.5

5 ~0.03103 +0.15224 pL40° 50.0 935 N 410.0

6 ~0.03103 ~0.15224 pLS0° 133.2 83.2 N 4932

pL60° 203.7 70.5 N 563.7

pL70° 259.2 55.5 N 619.2

-1 pL80° 297.6 38.4 N 657.6

-1 2-1 p.£90° 317.5 19.9 N 677.5

K=k -100 ) pL100° 329.9 12.4 N 689.9
0 2-1 p£101° 348.0 18.1 N 708.0

-1 1 p.L101.25° 5.7 17.7 N 725.7

, , pL101.5° 44.8 39.1 N 764.8

wbere o agd B are the darppmg coeffﬁments of the Ray- pL101.75° 88.0 432 N 208.0
lelgh damping. The analytical solutions can be relation- p£102° 108.4 204 N 384
ships 0.£110° 139.1 30.7 N 859.1
o= gosiofig ot @ PZRC DR ML
1o £140° 201.6 28.4 N 921.6

&= 5(5,.*3“’1') © gzuoo 235.7 34.1 N 955.7
pL160° 274.4 387 N 994.4

w =2 [Msin2i=LZ (10) p£170° 316.4 42.0 N 1036.4
ko 2n+12 p180° 0.0 43.6 N 1080.0

where @, and &; are the undamped natural frequency and
modal damping ratio, respectively.

A system with order 50 is used in analysis. k and m are
1, and the coefficients, @ and f3, of the Rayleigh damping
are 0.05 and 0.5, respectively. The lowest six eigenvalues
by analytical solutions are expressed in Table 2. No missed
eigenvalues exist in the lowest six eigenvalues because
these are the analytical solutions.

The process of checking the missed eigenvalues is as
follows. The number of the considered eigenvalues is three
(p =3) and the size of the contour is calculated by the
1.005 times the magnitude of the sixth eigenvalue
(p = 1.005|A¢ =0.1561). The half-circle with radius p in
the upper half-plane are divided into eighteen equal parts.
And, since the argument of the largest eigenvalue is
101.5°, the part of contour between 101° and 102° is sub-
divided into four equal parts. The results of the first check-
ing process are described in Table 3. The additional
checking process does not need because there are no drastic
change of the variation of the argument at ali checking
points. Since the total variation of the argument is 1080¢ as
in Table 3, we conclude that the total number of rotations is

where 0°s9j<360°, A9j= ()j—()j_l and ‘Y’ means that the
additional checking points are required and ‘N’ the additional
ones are not required.

Y A8 °

i _ 1080
= = = =
N 2 360° 3

Finally, we check the missed eigenvalues by comparing
the number of rotations with the number of the considered
eigenvalues. Since the number of the eigenvalues inside
the simple closed contour S and the number of rotations
are all three, the missed eigenvalues do not exist in the
simple closed contour S. As seen from this result, there-
fore, we verify that the proposed method is a technique of
checking the missed eigenvalues for an eigenproblem with
the damping matrix.

3.2 Three-Dimensional Frame Structure with Concen-
trated Dampers

In this example, a three-dimensional frame structure

with concentrated dampers is presented. Two layers of the

foundation are damped only in the horizontally transla-
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Lumped Damper: 10 N- sec/m
Young'’s Modulus : 2.1le+11 Pa
Mass Density : 7850 kg/m
Cross-section Inertia : 8.3e-6m’
Cross-section Area : 0.0Im
- EEEEEER
s awadl
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(b) Damping from two-layer
foundation

(a) Three-dimensional frame structure

Fig. 4. Three-dimensional frame structure with concentrated
dampers.

tional direction as shown in Fig. 4. The system could be
considered as a representative of a control system or a pas-
sively damped space structure. The model has 1008
degrees of freedom. The material and cross-sectional prop-
erties are shown in Fig. 4. The consistent mass matrix is
used to define M. The damping matrix C consists of the
Rayleigh damping and concentrated dampers. The Ray-
leigh coefficient ¢ is 0.0306 and 8 is 0.1016. The damp-
ing for each damper is 10.

The lowest ten eigenvalues are calculated by the Lanc-
zos method developed by Kim and Lee (1999) as in Table
4. Since the missed eigenvalues may exist in the required
ones, it is necessary to check the missed ones.

The number of the considered eigenpairs is five (p = 5 ).
And, the size of the contour is as follows: p = 1.005|4, =
8.7914. To select the initial checking points, the half-cir-
cle with radius p in the upper half-plane are divided into
thirty equal parts. And, since the argument of the largest
eigenvalue is 90.9°, the part of contour between 90° and
920 is subdivided into two equal parts. Since there are the
aggressive increase or the decrease of the argument in the
part of contour between 96° and 180c, the additional
checking process in the part of the contour should be per-
formed to calculate the exact variation of the argument.
The results of the first and the second checking processes
are described in Table 5. Since the total variation of the
argument is 1800° as in Table 5, we conclude that the total
number of rotations is

Y 46 o

i _ 1800
==_J1_ =
N 2r 360° 3

Table 4. The lowest ten eigenvalues of the three-dimensional frame
structure with concentrated dampers by the Lanczos method.

Eigenvalues
Mode Number -
' Real Imaginary
1 -0.0304 +3.0301
2 —-0.0304 -3.0301
3 —-0.0309 +3.0901
4 -0.0309 -3.0901
5 -0.0374 +3.6581
6 -0.0374 -3.6581
7 -0.1427 +8.6586
8 ~0.1427 —8.6586
9 ~0.1404 +8.7465
10 -0.1404 —8.7465

Finally, we check the missed eigenvalues by comparing
the number of rotations with the number of the calculated
eigenvalues. The missed eigenvalues do not exist in the
simple closed contour § because the number of rotations
and the number of the considered eigenvalues are all five.
Therefore, the proposed method can be applied to large
structural systems with the nonproportionally damping
matrix in practice.

4. Conclusions

This paper presents a technique of checking the missed
eigenvalues for the eigenproblem with the damping matrix
by using the argument principle. To apply the proposed
method to the large eigenproblem, the iterative approach is
introduced. By analyzing the numerical examples, it is ver-
ified that the proposed method can exactly check the
missed eigenvalues and can be applicable to the large
eigenproblem. The proposed method is the first technique
of checking the missed eigenvalues for the eigenproblem
with the damping matrix.

The technique using the Sturm sequence property only
requires one factorization process at one checking point.
On the other hand, the proposed method requires many fac-
torization processes at many checking points. This cannot
be inevitable, because the proposed method is executed in
the complex plane whereas the technique using the Sturm
sequence property on the real axis. Therefore, the proposed
method has a shortcoming that needs a large number of
operation counts. To apply more effectively the proposed
method to the practical problem, the research to reduce the
operation counts of the proposed method should be per-
formed.
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Table 5. The arguments and the variations of the arguments.

First checking process Second checking process

g 0, A6, YN z o, Af, Y/N erf
origin 0.00 - - 0.00

pL6° 269.6 269.6 N 269.6

pLI12° 176.2 266.6 N 536.2

pL18° 76.7 260.5 N 796.7

pL24° 328.1 2514 N 1048.1

pL30° 207.5 239.4 N 1287.5

pL36° 72.1 224.6 N 1512.1

pL42° 279.2 207.1 N 1719.2

pL48° 106.1 196.9 N 1906.1

pL54° 270.3 104.2 N 2070.3

pL60° 49.5 139.2 N 2209.5

pL66° 161.5 112.0 N 2321.5

pL72° 244.6 83.1 N 2404.6

pL78° 297.9 533 N 2457.9

pL84° 323.2 25.3 N 2483.2

pL90° 355.7 325 N 2515.7

pL9l° 43.0 473 N 2563.0

pL92° 83.8 40.8 N 2603.8

pLI6® 96.2 12.4 N 2616.2

pL99° 82.5 -13.7 N 2602.5

pL102° 64.6 328.4 or -31.6 Y pL102° 64.6 -17.9 N 2584.6

pLI105° 44.4 -20.2 N 2564.4

pLI108° 22.6 318.0 or —42.0 Y pLI108° 22.6 -21.8 N 2542.6

pLli1° 359.6 -23.0 N 2519.6

pL1i4° 335.7 313.1 or ~46.9 Y pL114° 3357 -23.9 N 2495.7

pLI7° 310.8 —249 N 2470.8

pLI120° 285.2 309.5 or —50.5 Y pLI120° 285.2 -25.6 N 2445.2

pLI123° 258.8 -26.4 N 2418.8

pLI126° 231.6 306.4 or —53.6 Y pLI26° 231.6 -27.2 N 2391.6

pLI129° 203.6 -28.0 N 2363.6

pLI132° 174.9 303.3 or —56.7 Y pLI132° 174.9 -28.7 N 2334.9

pL135° 1454 -29.5 N 2305.4

pL138° 115.2 300.3 or —59.7 Y pL138° 115.2 -30.2 N 2275.2

pLI141° 84.4 -30.8 N 2244.4

pL144° 529 297.7 or —62.3 Y pLl44° 52.9 -31.5 N 22129

pL147° 20.7 -32.2 N 2180.7

pL150° 348.0 295.1 or —64.9 Y pLI50° 348.0 -32.7 N 2148.0

pLI153° 314.8 -33.2 N 2114.8

pL156° 281.1 293.1 or —66.9 Y pLIS6° 281.1 -33.7 N 2081.1

pLI159° 246.9 -34.2 N 2046.9

pL162° 212.4 291.3 or —68.7 Y pLI162° 2124 -34.5 N 2012.4

pL165° 177.5 -349 N 1977.5

pL168° 142.3 289.9 or —70.1 Y pLI168° 142.3 -35.2 N 1942.3

pLI71? 107.0 -35.3 N 1907.0

pL174° 71.4 289.1 or —70.9 Y pLl74° 714 -35.6 N 1871.4

pLI77° 35.7 -35.7 N 1835.7

pLI180° 0.0 288.6 or —71.4 Y p£L180° 0.0 -35.7 N 1800.0

where 0°<6,<360°, Af; = 0,- Gj‘l and ‘Y’ means that the additional checking points are required and ‘N’means that the additional ones
are not required.



38 A Method for Checking Missed Eigenvalues in Eigenvalue

Acknowledgement

This research was supported by the National Research
Laboratory (NRL) program for Aseismic Control of
Structures. The financial support is gratefully acknowl-
edged.

References

Bathe KJ (1996) Finite Element Procedures, Prentice-Hall, Inc.

Meirovitch L (1980) Computational Methods in Structural Dynam-
ics, Sijthoff & Noordhoff.

Petyt M (1990) Introduction to Finite Element Vibration Analysis,
Cambridge University Press.

Hughes TJR (1987) The Finite Element Method; Linear Static and
Dynamic Finite Element Analysis, Prentice-Hall, Inc.

Newland DE (1989) Mechanical Vibration Anatysis and Computa-
tion, Longman Scientific & Technical.

Cronin DL (1990) Eigenvalue and eigenvector determination for non-
classically damped dynamic systems, Computers and Structures,
36: 133-138.

Rajakumar C (1993) Lanczos algorithm for the quadratic eigenvalue
problem in engineering applications, International Journal for
Numerical Methods in Engineering, 105: 1-22.

Leung AYT (1995) Subspace iteration method for complex symmet-
ric eigenproblems, Journal of Sound and Vibration, 184: 627-637.

Lee IW, Kim MC, Robinson AR (1998) Efficient solution method of
eigenproblems for damped structural systems using the modified
newton-raphson technique, Journal of Engineering Mechanics,
ASEC, 124: 576-580.

Kim MC, Lee IW (1999) Solution eigenproblems for non-propor-
tional damping system by Lanczos method, Earthquake Engineer-
ing and Structural Dynamics, 28: 157-172.

Tsai JSH, Chen SS (1993) Root distribution of a polynomial in sub-
regions of the complex plane, [EEE Transaction on Automatic Con-
trol, 38: 173-178.

Carrier GF, Krook M, Pearson CE (1966) Functions of a Complex
Variable: Theory and Technique, McGraw-Hill Book Company.

Henrici P (1974) Applied and Computational Complex Analysis. Vol.
1, John Wiley & Sons, Inc.

Korn GA, Korn TM (1968) Mathematical Handbook. 2nd ed,
McGraw-Hill Book Company.

Spiegel MR (1964) Complex Variables with an Introduction to Con-
formal Mapping and Its Application, McGraw-Hill Book Company.

Franklin GF, Powell JG, Emami-Naeini A (1994) Feedback Con-
trol of Dynamic Systems. 3rd ed., Addison-Weseley Publishing
Company, Inc.

Pearson CE (1974) Handbook of Applied Mathematics, Van Nos-
trand Reinhold Company.

Chen HC, Taylor RL (1988) Solution of eigenproblems for damped
structural systems by lanczos algorithm, Computers and Structures,
30: 151-161.



