• 제목/요약/키워드: non vacuum

검색결과 629건 처리시간 0.034초

An Reliable Non-Volatile Memory using Alloy Nano-Dots Layer with Extremely High Density

  • Lee, Gae-Hun;Kil, Gyu-Hyun;An, Ho-Joong;Song, Yun-Heup
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.241-241
    • /
    • 2010
  • New non-volatile memory with high density and high work-function metal nano-dots, MND (Metal Nano-Dot) memory, was proposed and fundamental characteristics of MND capacitor were evaluated. In this work, nano-dot layer of FePt with high density and high work-function (~5.2eV) was fabricated as a charge storage site in non-volatile memory, and its electrical characteristics were evaluated for the possibility of non-volatile memory in view of cell operation by Fowler-Nordheim (FN)-tunneling. Here, nano-dot FePt layer was controlled as a uniform single layer with dot size of under ~ 2nm and dot density of ${\sim}\;1.2{\times}10^{13}/cm^2$. Electrical measurements of MOS structure with FePt nano-dot layer shows threshold voltage window of ~ 6V using FN programming and erasing, which is satisfied with operation of the non-volatile memory. Furthermore, this structure provides better data retention characteristics compared to other metal dot materials with the similar dot density in our experiments. From these results, it is expected that this non-volatile memory using FePt nano-dot layer with high dot density and high work-function can be one of candidate structures for the future non-volatile memory.

  • PDF

Calculation of the ppressure pprofile for the ppLS Vacuum System

  • C.D.ppark;Kim, H.J.;Park, W.C.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1993년도 제5회 학술발표회 논문개요집
    • /
    • pp.39-39
    • /
    • 1993
  • A finite element analysis and Monte Carlo method have been applied to calculate the ppressure pprofiles around the ppohang Light Source (ppLS) electron storage ring with the aim of ppredicting the pperformance of the vacuum system designed for the ppLS vacuum system. After ppropperly choosing the design pparameters, the ppressure distribution are calculated as a function of the integrated stored beam current [AmppHrs]. The effect of changes of the vacuum pparameters, such as installed ppumpping sppeeds and synchrotron radiation induced gas desorpption rates on the ppressure pprofile, is also studied. The results indicate that the use of lumpped non-evapporable getter ppumpps together with spputter ion ppumpps for ppumpping the ppLS down to the required ppressure is ppossible in the ppresence of synchrotron induced gas loads, after resonable beam cleaning time.

  • PDF

역열전달해석기법에 의한 LED 조명용 무동력 냉각사이클링 방열기 성능평가 (Performance Evaluation of a Thermo Siphon Type Radiator for LED Lighting System by using an Inverse Heat Transfer Method)

  • 김은희;김흥규;서광석;이민규;조종두
    • 소성∙가공
    • /
    • 제20권7호
    • /
    • pp.473-478
    • /
    • 2011
  • In this study, the performance of a thermo siphon type radiator made of copper for LED lighting system was evaluated by using an inverse heat transfer method. Heating experiments and finite element heat transfer analysis were conducted for three different cases. The data obtained from experiments were compared with the analysis results. Based on the data obtained from experiments, the inverse heat transfer method was used in order to evaluate the heat transfer coefficient. First, the heat transfer analysis was conducted for non-vacuum state, without the refrigerant. The evaluated heat transfer coefficient on the radiator surface was 40W/$m^2^{\circ}C$. Second, the heat transfer analysis was conducted for non-vacuum state, with the refrigerant, resulting in the heat transfer coefficient of 95W/$m^2^{\circ}C$. Third, the heat transfer analysis was conducted for vacuum state, with refrigerant. For the third case, the evaluated heat transfer coefficients were 140W/$m^2^{\circ}C$. Third, the heat transfer analysis was conducted for vacuum state, with refrigerant. For the third case, the evaluated heat transfer coefficients were 140W/$m^2^{\circ}C$ for the radiator body, 5W/$m^2^{\circ}C$. Third, the heat transfer analysis was conducted for vacuum state, with refrigerant for the rising position of radiator pipe, 35W/$m^2^{\circ}C$. Third, the heat transfer analysis was conducted for vacuum state, with refrigerant. For the highest position of radiator pipe, and 120W/$m^2^{\circ}C$ for the downturn position of radiator pipe. As a result of inverse heat transfer analysis, it was confirmed that the thermal performance of the current radiator was best in the case of the vacuum state using the refrigerant.

STUDY OF NON-MONOTONOUS EEDF IN LOW PRESSURE PLASMA SOURCES

  • AntonovaT.B.;BougrovG.E.;BougrovaA.I.;Choi, W.K.;GontcharovL.A.;Jung, H.J.;Koh, S.K.;KondraninS.G.;KralkinaE.A.;SitinE.S.;ObukhovV.A
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1996년도 제11회 학술발표회 논문개요집
    • /
    • pp.151-151
    • /
    • 1996
  • PDF

Se 증발온도가 비진공 공정으로 제조한 CIS 광흡수층에 미치는 영향 (The effects of Se evaporation temperature on CIS absorber layer fabricated by non-vacuum process)

  • 박명국;안세진;윤재호;윤경훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.441-443
    • /
    • 2008
  • A non-vacuum process for fabrication of $CuInSe_2$ (CIS) absorber layer from the corresponding Cu, In solution precursors was described. Cu, In solution precursors was prepared by a room temperature colloidal route by reacting the starting materials $Cu(NO_3)_2$, $InCl_3$ and methanol. The Cu, In solution precursors were mixed with ethylcellulose as organic binder material for the rheology of the mixture to be adjusted for the doctor blade method. After depositing the mixture of Cu, In solution with binder on Mo/glass substrate, the samples were preheated on the hot plate in air to evaporate remaining solvents and to burn the organic binder material. Subsequently, the resultant CI/Mo/glass sample was selenized in Se evaporation in order to get a solar cell applicable dense CIS absorber layer. The CIS absorber layer selenized at $530^{\circ}C$ substrate temperature for 30 min with various Se gas evaporation temperature was characterized by XRD, SEM, EDS.

  • PDF