• 제목/요약/키워드: nitrogen model

검색결과 908건 처리시간 0.027초

다점 확률분포 모델을 이용한 초임계 압력 액체질소 제트 해석 (Numerical Analysis of Cryogenic Liquid Nitrogen Jets at Supercritical Pressures using Multi-Environment Probability Density Function approach)

  • 정기영;김남수;김용모
    • 한국분무공학회지
    • /
    • 제22권3호
    • /
    • pp.137-145
    • /
    • 2017
  • This paper describes numerical modeling of transcritical and supercritical fluid flows within a liquid propellant rocket engine. In the present paper, turbulence is modeled by standard $k-{\varepsilon}$ model. A conserved scalar approach in conjunction with multi-environment probability density function model is used to account for the turbulent mixing of real-fluids in the transcritical and supercritical region. The two real-fluid equations of state and dense-fluid correction schemes for mixtures are used to construct thermodynamic data library based on the conserved scalar. In this study, calculations are made on two cryogenic nitrogen jets under different chamber pressures. Sensitivity analysis for two different real-fluid equations of sate is particularly emphasized. Based on numerical results, precise structures of cryogenic nitrogen jets are discussed in detail. Numerical results show that the current real-fluid model can predict the essential features of the cryogenic liquid nitrogen jets.

사포닌 생산을 위한 인삼 root 액체배양조건의 최적화 (Optimization of Submerged (Ginseng Root Culture Conditions for the Production of Saponin)

  • 오훈일;장은정;이시경
    • Journal of Ginseng Research
    • /
    • 제24권3호
    • /
    • pp.118-122
    • /
    • 2000
  • 식물조직배양기술을 이용하석 인삼의 주요약리성분인 사포닌을 생산하고자, 식물생장조절물질로 유도된 인삼 root를 사용하여 사포닌 생산을 위한 최적액체배양조건을 RSM으로 조사하였다. 최적액체배양조건을 배지의 pH, sucrose 농도,nitrogen 농도, phosphate 농도의 3 level-4 factor의 fractional factorial design에 의하여 조사한 결과, 인삼 root의 사포닌 함량은 최저 0.174%에서 최고 0.303울까지 나타났다. 다중회귀분석으로 구한 model식을 가지고 등고분석과 3차원분석을 수행한 후 독립변수의 최저 또는 최고수준에서 종속변수가 최대치를 나타내지 않는 phosphate농도 변수에 대하여 model식을 편미분한 결과 인삼 roe떠 사포닌 함량이 최고치를 나타내는 액체배양조건은 pH 5.5, sucrose 5%, nitrogen 50 mg/L, phosphate 93 mg/L 예측되었다. 이렇게 결정된 조건값들을 model식에 대입하여 얻은 예상치는0.308%였다.

  • PDF

단백질과 단백질 가수분해물이 침수 속박 스트레스로 유도된 위 궤양 흰쥐의 질소대사에 미치는 영향 (Effect of Protein and Protein Hydrolysate on Nitrogen Metabolism in Rats with Gastric Ulcer Induced by Restraint and Water-Immersion Stress)

  • 김창임
    • Journal of Nutrition and Health
    • /
    • 제28권4호
    • /
    • pp.291-297
    • /
    • 1995
  • This study aimed to verify the nutritional and curative effects of protein hydroysate in rats model with gastric ulcer induced by restraint and water-immersion stress. Sprague-Dawley, famale rats weighing approximtely 200g were forced in 5$\times$5$\times$15cm plexiglas cage. The restraint and water immersion stress was carried at 20$\pm$2$^{\circ}C$ for 8-hours. After stress 4 kinds of diets(10% casein, 20% casein, 10% casein hydrolysate, 20% casein hydrolysate) were given for 5 days. In the gastric ulcer rats model, the growth, gastric emptying rate, trypsin activity in gastrointestinal content, plasma total protein, albumin, $\alpha$-amino-N, UUN, creatinine and hydroxyproline of the urine and nitrogen retention were analyzed for nutritional effects of dietary nitrogen levels(10%, 20%) and sources (casein, casein hydrolysate). The results were as follows ; In gastric ulcer rats model, severeness of ulcer, plasma protein, gastric emptying rate, nitrogen retention rate were not different between 20% casein-fed group and 20% casein hydrolysatefed group. But 10% casein hydrolysate-fed group had more curative group. The casein hydrolysate diet-fed group was lower trysin activity in small intestianl content than the casein-fed group, at both casein level(10%, 20%). Finally at 20% levels, there was no difference between casein and casein hydrolysate diet, but 10% level, casein hydrolysate diet was more curative of ulcer than casein diet in gastric ulcer rat model. The results of this study provide useful information concerning diet therapy for the patients with gastrointestinal diseases and the field of enteral diet materials.

  • PDF

Application of Near Infrared Spectroscopy for Nondestructive Evaluation of Nitrogen Content in Ginseng

  • Lin, Gou-lin;Sohn, Mi-Ryeong;Kim, Eun-Ok;Kwon, Young-Kil;Cho, Rae-Kwang
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1528-1528
    • /
    • 2001
  • Ginseng cultivated in different country or growing condition has generally different components such as saponin and protein, and it relates to efficacy and action. Protein content assumes by nitrogen content in ginseng radix. Nitrogen content could be determined by chemical analysis such as kjeldahl or extraction methods. However, these methods require long analysis time and result environmental pollution and sample damage. In this work we investigated possibility of non-destructive determination of nitrogen content in ginseng radix using near-infrared spectroscopy. Ginseng radix, root of Panax ginseng C. A. Meyer, was studied. Total 120 samples were used in this study and it was consisted of 6 sample sets, 4, 5 and 6-year-old Korea ginseng and 7, 8 and 9-year-old China ginseng, respectively. Each sample set has 20 sample. Nigrogen content was measured by electronic analysis. NIR reflectance spectra were collected over the 1100 to 2500 nm spectral region with a InfraAlyzer 500C (Bran+Luebbe, Germany) equipped with a halogen lapmp and PbS detector and data were collected every 2 nm data point intervals. The calibration models were carried out by multiple linear regression (MLR) and partial least squares (PLS) analysis using IDAS and SESAME software. Result of electronic analysis, Korean ginseng were different mean value in nitrogen content of China ginseng. Ginseng tend to generally decrease the nitrogen content according as cultivation year is over 6 years. The MLR calibration model with 8 wavelengths using IDAS software accurately predicted nitrogen contents with correlation coefficient (R) and standard error of prediction of 0.985 and 0.855%, respectively. In case of SESAME software, the MLR calibration with 9 wavelength was selected the best calibration, R and SEP were 0.972 and 0.596%, respectively. The PLSR calibration model result in 0.969 of R and 0.630 of RMSEP. This study shows the NIR spectroscopy could be applied to determine the nitrogen content in ginseng radix with high accuracy.

  • PDF

Fed-Batch 실험장치(實驗裝置)를 이용한 질산화(窒酸化) 미생물(微生物)들의 최대(最大) 성장율(成長率)의 결정(決定)에 관한 실험적(實驗的) 연구(硏究) (Rapid Determination of the Maximum Specific Growth Rates of Nitrogen Oxidizing Bacteria by Fed-Batch Experiments)

  • 이병희
    • 상하수도학회지
    • /
    • 제10권3호
    • /
    • pp.55-63
    • /
    • 1996
  • Nitrification reaction consists of two reactions: nitritification which oxidizes ammonia nitrogen to nitrite nitrogen and nitratification which oxidizes nitrite nitrogen to nitrate nitrogen. Each reaction is carried out by Nitrosomonas and Nitrobacter, respectively. The effective maximum growth rates for both bacteria have to be determined to design aeration tank whenever the aeration tanks have to nitrify ammonia nitrogen in influent. And these values are very important to use mathematical models such as IAWPRC model to simulate nitrification in activated sludge. There are several methods to determine these valves, however, the Fed-Batch experiments can determine these values within 72 hours. In this study, the mathematical equations and experimental procedures for Fed-Batch test are presented. Also, the experimental data and reported values are compared. The estimated mean values of maximum specific growth rates for Nitrosomonas and Nitrobacter are $0.5010day^{-1}$ and $0.6704day^{-1}$, respectively.

  • PDF

Decoupled Plasma Nitridation 공정 적용을 통한 Negative Bias Temperature Instability 특성 개선 (Improvement of Negative Bias Temperature Instability by Decoupled Plasma Nitridation Process)

  • 박호우;노용한
    • 한국전기전자재료학회논문지
    • /
    • 제18권10호
    • /
    • pp.883-890
    • /
    • 2005
  • In this paper, the established model of NBTI (Negative Bias Temperature Instability) mechanism was reviewed. Based on this mechanism, then, the influence of nitrogen was discussed among other processes. A constant concentration of nitrogen exists inside $SiO_2$ in order to prevent boron from diffusing and to increase dielectric constant. It was shown that NBTI improvement was achieved by controlling nitrogen profile. It was supposed that the existence of low activation energy of Si-N bonds at $Si-SiO_2$ interface attributes the improvement by making hydrogen prevent interface traps. It was also shown that improvement of NBTI can be achieved by more effective control of nitrogen profile. It was supposed that the maximum control of nitrogen profile can be achieved by DPN (Decoupled Plasma Nitridation) process.

지속 가능한 농업생산성 증대를 위한 질소 이용 효율 향상 (Improvement of Nitrogen Use Efficiency for Sustainable and Productive Agriculture)

  • 장안철;최지영;박순기;김동헌;배신철
    • 한국육종학회지
    • /
    • 제43권5호
    • /
    • pp.349-359
    • /
    • 2011
  • Agriculture plays a vital role in the sustenance of human society and is the fundamental of developing economies. Nitrogen is one of the most critical inputs that define crop productivity. To ensure better value for investment as well as to minimize the adverse impacts of the accumulative nitrogen species in environment, improving nitrogen use efficiency of crop plants is of key importance. Efforts have been made to study the genetic and molecular biological basis as well as the biochemical mechanisms involved in nitrogen uptake, assimilation, translocation and remobilization in crops and model plants. This review gives an overview of metabolic, enzymatic, genetic and biotechnological aspects of nitrogen uptake, assimilation, remobilization and regulation. This review presents the complexity of nitrogen use efficiency and the need for an integrated approach combining physiology, quantitative trait genetics, system biology, soil science, ecophysiology and biotechnological interventions to improve nitrogen use efficiency.

기후변화시나리오 다중모형 앙상블에 따른 논 질소 유출 부하량 변동 및 불확실성 평가 (Evaluating Changes and Uncertainty of Nitrogen Load from Rice Paddy according to the Climate Change Scenario Multi-Model Ensemble)

  • 최순군;정재학;엽소진;김민욱;김진호;김민경
    • 한국농공학회논문집
    • /
    • 제62권5호
    • /
    • pp.47-62
    • /
    • 2020
  • Rice paddy accounts for approximately 52.5% of all farmlands in South Korea, and it is closely related to the water environment. Climate change is expected to affect not only agricultural productivity also the water and the nutrient circulation. Therefore this study was aimed to evaluate changes of nitrogen load from rice paddy considering climate change scenario uncertainty. APEX-Paddy model which reflect rice paddy environment by modifying APEX (Agricultural Policy and Environmental eXtender) model was used. Using the AIMS (APCC Integrated Modeling Solution) offered by the APEC Climate Center, bias correction was conducted for 9 GCMs using non-parametric quantile mapping. Bias corrected climate change scenarios were applied to the APEX-Paddy model. The changes and uncertainty in runoff and nitrogen load were evaluated using multi-model ensemble. Paddy runoff showed a change of 23.1% for RCP4.5 scenario and 45.5% for RCP8.5 scenario compared the 2085s (2071 to 2100) against the base period (1976 to 2005). The nitrogen load was found to be increased as 43.9% for RCP4.5 scenario and 76.0% for RCP8.5 scenario. The uncertainty analysis showed that the annual standard deviation of nitrogen loads increased in the future, and the maximum entropy indicated an increasing tendency. And Duncan's analysis showed significant differences among GCMs as the future progressed. The result of this study seems to be used as a basis for mid- and long-term policies for water resources and water system environment considering climate change.

관개 논에서의 영양물질 추정 모형의 개발 (Development of CREAMS-PADDY Model for Simulating Pollutants from Irrigated Paddies)

  • 서춘석;박승우;김상민;강문성;임상준;윤광식
    • 한국농공학회지
    • /
    • 제44권3호
    • /
    • pp.146-156
    • /
    • 2002
  • The objective of this study was to develop a modified CREAMS model for paddy field conditions. The model simulates daily balance of water and nutrient from irrigated paddies using meteorological, irrigation, and agricultural management data. The model simulates daily evapotranspiration of paddy using Penman equation and determines daily flooding depth changes. Total nitrogen and phosphorus concentrations within flooding water, surface runoff, and leaching water from a paddy field also can be simulated. Parameters of the model were calibrated using observed data of the Agricultural Experiment Station of the Seoul National University in Suwon Korea. The model was applied for the irrigation period of paddy field in Gicheon area when 1,234 mm annual rainfall was occurred. The simulated losses of the total nitrogen and total phosphorous were 11.27 kg/ha and 0.98 kg/ha, respectively. There was a good agreement between observed and simulated data. It was found that CREAMS-PADDY model was capable of predicting runoff and nutrient losses from irrigated paddy fields.

Long-term Seasonal and Interannual Variability of Epilimnetic Nutrients (N, P), Chlorophyll-a, and Suspended Solids at the Dam Site of Yongdam Reservoir and Empirical Models

  • An, Kwang-Guk
    • 생태와환경
    • /
    • 제44권2호
    • /
    • pp.214-225
    • /
    • 2011
  • The objectives of the study were to evaluate seasonal patterns of epilimnetic water quality, and determine interannual eutrophication patterns at the dam site of Yong-dam Reservoir using long-term data during 2002~2009. Ionic dilutions, based on specific conductivity, occurred in the summer period in response to the intense monsoon rain and inflow, and suspended solid analysis indicated that the reservoir was clear except for the monsoon. Seasonality of nitrogen contents varied depending on the types of nitrogen and responded to ionic dilution; Ammonia-nitrogen ($NH_4$-N) peaked at dry season but nitrate-nitrogen ($NO_3$-N) peaked in the monsoon when the ionic dilution occurred. The maxima of $NO_3$-N seemed to be related with external summer N-loading from the watershed and active nitrogen fixation of bluregreens in the summer. $NO_3$-N was major determinant (>50%) of the total nitrogen pool and relative proportion of $NH_4$-N was minor. Long-term annual $NO_3$-N and TDN showed continuous increasing trends from 2004 to 2009, whereas TP and TDP showed decreasing trends along with chlorophyll-a (CHL) values. Empirical model analysis of log-transformed nutrients and N : P ratios on the CHL showed that the reservoir CHL had a stronger linear function with TP ($R^2$=0.89, p<0.001) than TN ($R^2$=0.35, p=0.120). Overall results suggest that eutrophication progress, based on TP and CHL, is slow down over the study period and this was mainly due to reduced phosphorns, which is considered as primary nutrient by the empirical model.