DOI QR코드

DOI QR Code

Evaluating Changes and Uncertainty of Nitrogen Load from Rice Paddy according to the Climate Change Scenario Multi-Model Ensemble

기후변화시나리오 다중모형 앙상블에 따른 논 질소 유출 부하량 변동 및 불확실성 평가

  • Choi, Soon-Kun (Climate Change and Agroecology Division, National Institute of Agricultural Sciences) ;
  • Jeong, Jaehak (AgriLife Research, Texas A&M University) ;
  • Yeob, So-Jin (Climate Change and Agroecology Division, National Institute of Agricultural Sciences) ;
  • Kim, Minwook (Climate Change and Agroecology Division, National Institute of Agricultural Sciences) ;
  • Kim, Jin Ho (Climate Change and Agroecology Division, National Institute of Agricultural Sciences) ;
  • Kim, Min-Kyeong (Climate Change and Agroecology Division, National Institute of Agricultural Sciences)
  • Received : 2020.06.15
  • Accepted : 2020.09.08
  • Published : 2020.09.30

Abstract

Rice paddy accounts for approximately 52.5% of all farmlands in South Korea, and it is closely related to the water environment. Climate change is expected to affect not only agricultural productivity also the water and the nutrient circulation. Therefore this study was aimed to evaluate changes of nitrogen load from rice paddy considering climate change scenario uncertainty. APEX-Paddy model which reflect rice paddy environment by modifying APEX (Agricultural Policy and Environmental eXtender) model was used. Using the AIMS (APCC Integrated Modeling Solution) offered by the APEC Climate Center, bias correction was conducted for 9 GCMs using non-parametric quantile mapping. Bias corrected climate change scenarios were applied to the APEX-Paddy model. The changes and uncertainty in runoff and nitrogen load were evaluated using multi-model ensemble. Paddy runoff showed a change of 23.1% for RCP4.5 scenario and 45.5% for RCP8.5 scenario compared the 2085s (2071 to 2100) against the base period (1976 to 2005). The nitrogen load was found to be increased as 43.9% for RCP4.5 scenario and 76.0% for RCP8.5 scenario. The uncertainty analysis showed that the annual standard deviation of nitrogen loads increased in the future, and the maximum entropy indicated an increasing tendency. And Duncan's analysis showed significant differences among GCMs as the future progressed. The result of this study seems to be used as a basis for mid- and long-term policies for water resources and water system environment considering climate change.

Keywords

References

  1. Bae, D. H., I. W. Jung, B. J. Lee, and M. H. Lee, 2011. Future Korean water resources projection considering uncertainty of GCMs and hydrological models. Journal of Korea Water Resources Association 44(5): 389-406 (in Korean). doi:10.3741/JKWRA.2011.44.5.389.
  2. Cho, J., I. Jung, W. Cho, and S. Hwang, 2018. Usercentered climate change scenarios technique development and application of Korean peninsula. Journal of Climate Change Research 9(1): 13-29 (in Korean). doi:10.15531/ksccr.2018.9.1.13.
  3. Cho, J., S. Hwang, G. Go, K. Y. Kim, and J. Kim, 2015. Assessing the climate change impacts on agricultural reservoirs using the SWAT model and CMIP5 GCMs. Journal of the Korean Society of Agricultural Engineers 57(5): 1-12 (in Korean). doi:10.5389/KSAE.2015.57.5.001.
  4. Choi, S. K., J. Jeong, and M. K. Kim, 2017. Simulating the effects of agricultural management on water quality dynamics in rice paddies for sustainable rice productionmodel development and validation. Water 9(11): 869. doi: 10.3390/w9110869.
  5. Choi, S. K., J. Jeong, J. Cho, S. O. Hur, D. H. Choi, and M. K. Kim, 2018. Assesing the climate change impacts on paddy rice evapotranspiration considering uncertainty. Journal of Climate Change Research 9(2): 143-156 (in Korean). doi:10.15531/KSCCR.2018.9.2.143.
  6. Chung, B. Y., J. S. Kim, and J. Y. Cho, 2004. Environmental monitoring of agro-ecosystem using environmental isotope tracer technology (No.KAERI/AR-712/2004). Korea Atomic Energy Research Institute (in Korean).
  7. Chung, U., J. Cho, and E. J. Lee, 2015. Evaluation of agro-climatic index using multi-model ensemble downscaled climate prediction of CMIP5. Korean Journal of Agricultural and Forest Meteorology 17(2): 108-125 (in Korean). doi:10.5532/KJAFM.2015.17.2.108.
  8. Gay, C., and F. Estrada, 2010. Objective probabilities about future climate are a matter of opinion. Climate Change 99: 27-46. doi:10.1007/s10584-009-9681-4.
  9. Hwang, H. S., J. H. Jeon, J. H. Ham, and C. G. Yoon, 2003. Analysis of nutrients balance during paddy rice cultivation. Korean Journal of Ecology and Environment 36(1): 66-73 (in Korean).
  10. Im, E. S., I. W., Jung, H. Chang, D. H. Bae, and W. T. Kwon, 2010. Hydroclimatological response to dynamically downscaled climate change simulations for Korean basins. Climatic Change 100(3-4): 485-508. doi:10.1007/s10584-009-9691-2.
  11. Jaynes, E. T., 1957. Information theory and statistical mechanics. Physical Review 106(4): 620-630. https://doi.org/10.1103/PhysRev.106.620
  12. Jeon, J. H., C. G. Yoon, A. S. Donigian Jr, and K. W. Jung, 2007. Development of the HSPF-Paddy model to estimate watershed pollutant loads in paddy farming regions. Agricultural Water Management 90: 75-86. doi: 10.1016/j.agwat.2007.02.006.
  13. Jeon, J. H., C. G. Yoon, J. K. Choi, and K. S. Yoon, 2005. The comparison of water budget and nutrient loading from paddy field according to the irrigation methods. Korean Journal of Limnology 38(1): 118-127 (in Korean).
  14. Kamruzzaman, M., S. Hwang, S. K. Choi, J. Cho, I. Song, J. H. Song, H. Jeong, T. Jang, and S. H. Yoo, 2020. Evaluating the Impact of Climate Change on Paddy Water Balance Using APEX-Paddy Model. Water 12(3): 852. DOI: 10.3390/w12030852.
  15. Kang, M. S., S. W. Park, J. J. Lee, and K. H. Yoo, 2006. Applying SWAT for TMDL programs to a small watershed containing rice paddy fields. Agricultural Water Management 79(1): 72-92. doi:10.1016/j.agwat.2005.02.015.
  16. Kim, J. S., J. J. Lee, and S. Y. Oh, 2000. Characteristics of Concentrations of Nutrients in Paddy Plots with Different Fertilizer Application Rates. Korean National Committee on Irrigation and Drainage 7(1): 47-56. (in Korean)
  17. Kim, K., M. S. Kang, I. Song, J. H. Song, J. Park, S. M. Jun, J. R. Jang, and J. S. Kim, 2016. Effects of controlled drainage and slow-release fertilizer on nutrient pollutant loads from paddy fields. Journal of the Korean Society of Agricultural Engineers 58(1): 1-10. (in Korean) DOI: 10.5389/KSAE.2016.58.1.001
  18. Kim, M. K., K. A. Roh, N. J. Lee, M. C. Seo, and M. H. Koh, 2005. Nutrient load balance in large-scale paddy fields during rice cultivation. Korean Journal of Soil Science and Fertilizer 38(3): 164-171. (in Korean)
  19. Kim, Y. J., D. H. Kim, and J. H. Jeon, 2014. Characteristics of water budget components in paddy rice field under the asian monsoon climate: Application of hspf-paddy model. Water 6(7): 2041-2055. doi:10.3390/w6072041.
  20. KOSIS, 2020. www.kosis.go.kr/ 2020.6.4. access.
  21. Kunimatsu, T., L. Rong, M. Sudo, and I. Takeda, 1994. Runoff loadings of materials causing water pollution from a paddy field during a non-planting period. Transactions of The Japanese Society of Irrigation, Drainage and Rural Engineering 170: 45-54.
  22. Lee, J. K., and Y. O. Kim, 2012. Selecting climate change scenarios reflecting uncertainties. Atmosphere 22(2):149-161 (in Korean). doi:10.14191/Atmos.2012.22.2.149.
  23. Lee, J. K., Y. O. Kim, and Y. Kim, 2016. A new uncertainty analysis in the climate change impact assessment. International Journal of Climatology 37:3837-3846. doi:10.1002/joc.4957.
  24. Lee, K. D., S. Y. Hong, Y. H. Kim, S. I. Na, and K. B. Lee, 2013. Characteristics of TN and TP in runoff from reclaimed paddy field of fine sandy loam. Korean Journal of Soil Science and Fertilizer 46(6): 417-425. doi:10.7745/KJSSF.2013.46.6.417.
  25. Li, Y., B. M. Chen, Z. G. Wang, and S. L. Peng, 2011. Effects of temperature change on water discharge, and sediment and nutrient loading in the lower Pearl River basin based on SWAT modelling. Hydrological Sciences Journal 56(1): 68-83. doi:10.1080/02626667.2010.538396.
  26. NAS, 2010. Standards for fertilization by crops. National Institute of Agricultural Sciences (in Korean).
  27. NICS, 2009. 2008 Crop test report. National Institute of Crop Sciences (in Korean).
  28. Park, H. K., W. Y. Choi, K. Y. Kim, B. I. Ku, Y. D. Kim, C. K. Kim, and J. K. Ko, 2009. Forecasting optimum heading date and yield of rice depending on water condition. Korean Journal International Agriculture 20(4):320-330 (in Korean).
  29. RDA, 2007. High-quality rice production technology. Rural Development Administration (in Korean).
  30. Relevant Ministerial Consortium, 2012. The second measures of non-point source pollution management ('12-'20). Ministry of Land, Infrastructure and Transport (in Korean).
  31. Sakaguchi, A., S. Eguchi, T. Kato, M. Kasuya, K. Ono, A. Miyata, and N. Tase, 2014. Development and evaluation of a paddy module for improving hydrological simulation in SWAT. Agricultural Water Management 137: 116-122. doi:10.1016/j.agwat.2014.01.009.
  32. Seo, C. S., S. W. Park, S. J. Im, K. S. Yoon, S. M. Kim, and M. S. Kang, 2002. Development of CREAMS-PADDY model for simulating pollutants from irrigated paddies. Journal of the Korean Society of Agricultural Engineers 44(3): 146-156 (in Korean).
  33. Shin, D. S., and S. K. Kwun, 1990. The concentration and input/output of nitrogen and phosphorus in paddy fields. Korean Journal Environment Agriculture 9(2): 133-141 (in Korean).
  34. Song, J. H., M. S. Kang, I. H. Song, and J. R. Jang, 2012. Comparing farming methods in pollutant runoff loads from paddy fields using the CREAMS-PADDY model. Korean Journal Environment Agriculture 31(4): 318-327 (in Korean). doi:10.5338/KJEA.2012.31.4.318.
  35. Stenger, R., E. Priesack, and F. Beese, 1995. Rates of net nitrogen mineralization in disturbed and undisturbed soils. Plant and Soil 171(2): 323-332. https://doi.org/10.1007/BF00010288
  36. Takeda, I., 1991. Contaminant balance of a paddy field area and its loading in the water system-studies on pollution loadings from a paddy field area. Japan Society Irrigation Drainage Reclamation Engineering 153: 63-72.
  37. Tsuchiya, R., T. Kato, J. Jeong, and J. Arnold, 2018. Development of SWAT-Paddy for simulating lowland paddy fields. Sustainability 10(9): 3246. doi:10.3390/su10093246.
  38. Vlek, P. L. G., and E. T. Craswell, 1979. Effect of nitrogen source and management on ammonia volatilization losses from flooded rice-soil systems. Soil Science Society of America Journal 43(2): 352-358. doi:10.2136/sssaj1979.03615995004300020023x.
  39. Williams, J. R., J. G. Arnold, and R. Srinivasan, 2006. The APEX model. Texas A&M Blackland Research Center Temple.
  40. Yoo, S. H., T. Kim, S. H. Lee, and J. Y. Choi, 2015. Trend analysis of projected climate data based on CMIP5 GCMs for climate change impact assessment on agricultural water resources. Journal of the Korean Society of Agricultural Engineers 57(5): 69-80 (in Korean). doi:10.5389/KSAE.2015.57.5.069.
  41. Yoon, C. G., B. H. Kim, J. H. Jeon, and H. S. Hwang, 2002. Characteristics of pollutant loading from paddy field area with groundwater irrigation. Journal of the Korean Society of Agricultural Engineers 44(5): 116-126 (in Korea).
  42. Yoon, C. G., J. H. Ham, and, J. H. Jeon, 2003. Mass balance analysis in Korean paddy rice culture. Paddy and Water Environment 1(2): 99-106. https://doi.org/10.1007/s10333-003-0018-z