• Title/Summary/Keyword: nitroaromatics

Search Result 6, Processing Time 0.021 seconds

Detection of Nitroaromatic Compounds with Functionalized Porous Silicon Using Quenching Photoluminescence

  • Cho, Sungdong
    • Journal of Integrative Natural Science
    • /
    • v.3 no.4
    • /
    • pp.202-205
    • /
    • 2010
  • Nanocrystalline porous silicon surfaces have been used to detect nitroaromatic compounds in vapor phase. The mode of photoluminescence is emphasized as a sensing attitude or detection technique. Quenching of photoluminescence from nanocrystalline porous surfaces as a transduction mode is measured upon the exposure of nitroaromatic compounds. Reversible detection mode for nitroaromatics is, too, observed. To verify the detection afore-mentioned, photoluminescent freshly prepared porous silicons are functionalized with different groups. The mechanism of quenching of photoluminescence is attributed to the electron transfer behaviors of quantum-sized nano-crystallites in the porous silicon matrix to the analytes(nitroaromatics). An attempt has been done to prove that the surface-derivatized photoluminescent porous silicone surfaces can act as versatile substrates for sensing behaviors due to having a large surface area and highly sensitive transduction mode.

Transformation of Nitroaromatics and Their Reduced Metabolites by Oxidative Coupling Reaction (Oxidative Coupling에 의한 Nitroaromatics와 그 환원대사산물의 전환)

  • Ahn, Mi-Youn;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.3
    • /
    • pp.239-245
    • /
    • 1998
  • To investigate the formation of bound residue with soil organic materials by oxidative coupling, nitroaromatics and their reduced metabolites, the insecticide parathion and the herbicide asulam were incubated with oxidoreductase, laccase or horseradish peroxidase, in the presence or absence of humic monomers. Most of aminotoluenes and amino-nitrophenols were completely transformed while most of nitrotoluenes and nitrophenols remained unchanged by a lactase or horseradish peroxidase in the presence or absence of humic monomers. Amino-nitrotoluenes were not transformed without humic monomers, but the addition of various humic monomers caused a considerable difference in the transformation of amino-nitrotoluenes by a lactase or horseradish peroxidase. Amino-nitrotoluenes were most transformed in the presence of catechol, syringaldehyde and protocatechuic acid. The insecticide parathion with nitro group and its metabolite were not mostly transformed in the presence or absence of humic monomers. The herbicide asulam with amino group remained unchanged without humic monomers as well, but the stimulating effect on the transformation of asulam was caused by the addition of catechol, syringaldehyde, protocatechuic acid or caffeic acid with a lactase.

  • PDF

Mesoporous Carbon as a Metal-Free Catalyst for the Reduction of Nitroaromatics with Hydrazine Hydrate

  • Wang, Hui-Chun;Li, Bao-Lin;Zheng, Yan-Jun;Wang, Wen-Ying
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2961-2965
    • /
    • 2012
  • Mesoporous carbons with tailored pore size were prepared by using sucrose as the carbon source and silicas as the templates. The silica templates were obtained from a hydroxypropyl-${\beta}$-cyclodextrin-silica hybrids using ammonium perchlorate oxidation at different temperatures to remove the organic matter. The structures and surface chemistry properties of these carbon materials were characterized by $N_2$ adsorption, TEM, SEM and FTIR measurements. The catalytic performances of these carbon materials were investigated through the reduction of nitroaromatic using hydrazine hydrate as the reducing agent. Compared with other carbon materials, such as active carbon, and carbon materials from the silica templates obtained by using calcination to remove the organic matter, these carbon materials exhibited much higher catalytic activity, no obvious deactivation was observed after recycling the catalyst four times. Higher surface area and pore volume, and the presence of abundant surface oxygen-containing functional groups, which originate from the special preparation process of carbon material, are likely responsible for the high catalytic property of these mesoporous carbon materials.

Treatment of hazardous chemicals by Nanoscale Iron powder (나노크기 철 분말을 이용한 난분해성 유해화합물질의 처리)

  • 최승희;장윤영;황경엽;김지형
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.3
    • /
    • pp.85-93
    • /
    • 1999
  • The destruction of hazardous chemicals such as chlorinated organic compounds(COCs) and nitroaromatic compounds(NACs) by zero-valent iron powder is one of the latest innovative technologies. In this paper. the rapid dechlorination of chlorinated compounds as well as transformation of nitro functional group to amine functional group in the nitroaromatic compounds using synthesized zero-valent iron powder with nanoscale were studied in anaerobic batch system. Nanoscale iron, characterized by high surface area to mass ratios(31.4$\textrm{m}^2$/g) and high reactivity, could quickly reacts with compounds such as TCE, chloroform, nitrobenzene, nitrotoluene, dinitrobenzene and dinitrotoluene, at concentration of 10mg/L in aqueous solution at room temperature and pressure. In this study, the TCE was dechlorinated to ethane and chloroform to methane and nitro groups in NACs were transformed to amino groups in less than 30min. These results indicated that this chemical method using nanoscale iron powder has the high potential for the remediation of soils and groundwater contaminated with hazardous toxic chemicals including chlorinated organic compounds and nitro aromatic compounds.

  • PDF

Degradation of 3-Methyl-4-nitrophenol, a Main Product of the Insecticide Fenitrothion, by Burkholderia sp. SH-1 Isolated from Earthworm (Eisenia fetida) Intestine

  • Kim, Seon-Hwa;Park, Myung-Ryeol;Han, Song-Ih;Whang, Kyung-Sook;Shim, Jae-Han;Kim, In-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.281-287
    • /
    • 2007
  • Microorganisms were isolated from earthworm intestine and examined for their ability to degrade 3-methyl-4-nitrophenol (MNP), a main degradation product of the insecticide fenitrothion. An isolate that showed the best degradation of MNP was selected for further study. The 16S rRNA analysis showed that the isolate belongs to the genus of Burkholderia, close to phenanthrene-degrading Burkholderia sp. S4.9, and is named Burkholderia sp. SH-1. When time-course degradation of MNP by SH-1 was examined by high performance liquid chromatographic analysis, almost complete degradation of MNP was observed within 26 h. Colony forming unit value assays indicated that the isolate SH-1 was capable of utilizing MNP as a sole carbon source. SH-1 could also degrade p-nitrophenol (PNP) but could not degrade ortho-substituted nitroaromatics such as 2,4-, 2,6- and 2,5-dinitrophenol. Catechol was detected as the main degration product of MNP and PNP. SH-1 was also found in the soil from which earthworms were obtained. These results suggest that the dispersal of Burkholderia sp. SH-1 into different environment with the aid of earthworms is likely to play a role in bioremediation of the soil contaminated with MNP.

Screening and Possibility of Semi-quantitative Analysis of Explosive Compounds in Soil Using EXPRAY$^{(R)}$ Explosives Field Detection Kit (화약물질 현장검출시약 EXPRAY$^{(R)}$를 이용한 토양내 화약물질 스크리닝 및 준정량화 가능성)

  • Bae, Bum-Han;Cho, Jung-Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.2
    • /
    • pp.45-53
    • /
    • 2009
  • A quick and simple detection method of explosive compounds in environmental matrix (soil and water) can provide a screening step which reduces the number of unnecessary samples and the cost of expensive laboratory analysis at a site investigation. A commercially available EXPRAY$^{(R)}$Explosives Field Detection Kit (EXPRAY) was used to determine the minimum detection concentration and to test the possibility of semi-quantitative analysis of 14 explosive compounds using standard solutions. The results showed that EXPRAY could detect 5 explosive compounds, TNT, RDX, HMX, Tetryl, and TNB, out of 14 US EPA designated explosives. The minimum detection limit of the nitramine explosives was 14 ng/$^2$ for HMX and RDX. EXPRAY was more sensitive to nitroaromatics than the nitramines and the minimum detection limits per unit area (mm$^2$) for Tetryl, TNB, and TNT, were 3 ng, 3 ng, and 0.3 ng, respectively. The semi-quantification of 5 explosive compounds in an order ofmagnitude could be achieved by the intensity of developed color only when EXPRAY was applied on the standard solutions under controlled laboratory conditions. With contaminated soil samples, however, only the presence and type of explosive compounds was identified. Therefore, EXPRAY is an economic and sensitive method that can be used in a screening step for the identification of explosives in the field samples.