DOI QR코드

DOI QR Code

Detection of Nitroaromatic Compounds with Functionalized Porous Silicon Using Quenching Photoluminescence

  • Received : 2010.12.02
  • Accepted : 2010.12.23
  • Published : 2010.12.31

Abstract

Nanocrystalline porous silicon surfaces have been used to detect nitroaromatic compounds in vapor phase. The mode of photoluminescence is emphasized as a sensing attitude or detection technique. Quenching of photoluminescence from nanocrystalline porous surfaces as a transduction mode is measured upon the exposure of nitroaromatic compounds. Reversible detection mode for nitroaromatics is, too, observed. To verify the detection afore-mentioned, photoluminescent freshly prepared porous silicons are functionalized with different groups. The mechanism of quenching of photoluminescence is attributed to the electron transfer behaviors of quantum-sized nano-crystallites in the porous silicon matrix to the analytes(nitroaromatics). An attempt has been done to prove that the surface-derivatized photoluminescent porous silicone surfaces can act as versatile substrates for sensing behaviors due to having a large surface area and highly sensitive transduction mode.

Keywords

References

  1. M. Bader, T. Goen, J. Muller, and J. Angerer, "Analysis of nitroaromatic compounds in urine by gas chromatography-mass spectrometry for the biological monitoring of explosives", J. Cromatogr. B., Vol. 710, p. 91, 1998. https://doi.org/10.1016/S0378-4347(98)00138-8
  2. T. Khayamian, M. Tabrizchi, and M. TJafari, "Analysis of 2,4,6-trinitrotoluene, pentaerythritol tetranitrate and cyclo-1,3,5-trimethylene-2,4,6-trinitramine using negative corona discharge ion mobility spectrometry", Talanta, Vol. 59, p. 327, 2003. https://doi.org/10.1016/S0039-9140(02)00521-0
  3. J. Naal, J. H. Park, S. Bernhard, J. P. Shapleigh, C. A. Batt, and H. D. Abruna, "Amperometric TNT Biosensor Based on the Oriented Immobilization of a Nitroreductase Maltose Binding Protein Fusion", Anal. Chem., Vol. 74, p. 140, 2002. https://doi.org/10.1021/ac010596o
  4. J. V. Goodpaster and V. L. Mcguffin, "Fluorescence Quenching as an Indirect Detection Method for Nitrated Explosives", Anal. Chem., Vol. 73, p. 2004, 2001. https://doi.org/10.1021/ac001347n
  5. A. M. Jim' enez and M. J. Navas, "Chemiluminescence detection systems for the analysis of explosives", J. Hazard Mater., Vol. 106, p. 1, 2004. https://doi.org/10.1016/j.jhazmat.2003.07.005
  6. J. M. Sylvia, J. A. Janni, J. D. Klein, and K. M. Spencer, "Surface-Enhanced Raman Detection of 2,4-Dinitrotoluene Impurity Vapor as a Marker To Locate Landmines", Anal. Chem., Vol. 72, p. 5834, 2000. https://doi.org/10.1021/ac0006573
  7. V. P. Anferov, G. V. Mozjoukhine, and R. Fisher, "Pulsed spectrometer for nuclear quadrupole resonance for remote detection of nitrogen in explosives", Rev. Sci. Instrum., Vol. 71, p. 1656, 2000. https://doi.org/10.1063/1.1150514
  8. R. D. Luggar, M. J. Farquharson, J. A. Horrocks, and R. J. Lacey, "Multivariate analysis of statistically poor EDXRD spectra for the detection of concealed explosives", J. X-ray Spectrom., Vol. 27, p. 87, 1998. https://doi.org/10.1002/(SICI)1097-4539(199803/04)27:2<87::AID-XRS256>3.0.CO;2-0
  9. M. Krausa and K. Schorb, "Trace detection of 2,4,6- trinitrotoluene in the gaseous phase by cyclic voltammetry", J. Electroanal. Chem., Vol. 461, p. 10, 1999. https://doi.org/10.1016/S0022-0728(98)00162-4
  10. K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel, T. P. Vaid, and D. R. Walt, "Cross-Reactive Chemical Sensor Arrays", Chem. Rev., Vol. 100, p. 2595, 2000. https://doi.org/10.1021/cr980102w
  11. R. A. McGill, T. E. Mlsna, R. Mowery, "Matrixassisted pulsed-laser evaporation (MAPLE) of functionalized polymers: applications with chemical sensors", Proc.SPIE., Vol. 3274, p. 630, 1998.
  12. M. Krausa and K. Schorb, "Trace detection of 2,4,6- trinitrotoluene in the gaseous phase by cyclic voltammetry", J. Electranal. Chem., Vol. 461, p. 10, 1999. https://doi.org/10.1016/S0022-0728(98)00162-4
  13. J. S. Yang and T. M. Swager, "Fluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural Effects", J. Am. Chem. Soc., Vol. 120, p. 11864, 1998. https://doi.org/10.1021/ja982293q
  14. H. Sohn, R. M. Calhoun, M. J. Sailor, and W. C. Trogler, "Detection of TNT and Picric Acid on Surfaces and in Seawater by Using Photoluminescent Polysiloles", Angew. Chem. Int. Ed., Vol. 40, p. 2104, 2001. https://doi.org/10.1002/1521-3773(20010601)40:11<2104::AID-ANIE2104>3.0.CO;2-#
  15. J. R. Lakowicz, "Quenching of fluorescence", Principles of Fluorescence Spectroscopy, 2nd Ed (New York; Kluwer/Plenum), p. 8, 1999.
  16. R. J. Harper, J. R. Almirall, and K. G. Furton, "Identification of dominant odor chemicals emanating from explosives for use in developing optimal training aid combinations and mimics for canine detection", Talanta, Vol 67, p. 313, 2005. https://doi.org/10.1016/j.talanta.2005.05.019