Screening and Possibility of Semi-quantitative Analysis of Explosive Compounds in Soil Using EXPRAY$^{(R)}$ Explosives Field Detection Kit

화약물질 현장검출시약 EXPRAY$^{(R)}$를 이용한 토양내 화약물질 스크리닝 및 준정량화 가능성

  • Bae, Bum-Han (Department of Civil & Environmental Engineering, Kyungwan University) ;
  • Cho, Jung-Hyun (Department of Civil & Environmental Engineering, Kyungwan University)
  • 배범한 (경원대학교 토목환경공학과) ;
  • 조정현 (경원대학교 토목환경공학과)
  • Published : 2009.04.30

Abstract

A quick and simple detection method of explosive compounds in environmental matrix (soil and water) can provide a screening step which reduces the number of unnecessary samples and the cost of expensive laboratory analysis at a site investigation. A commercially available EXPRAY$^{(R)}$Explosives Field Detection Kit (EXPRAY) was used to determine the minimum detection concentration and to test the possibility of semi-quantitative analysis of 14 explosive compounds using standard solutions. The results showed that EXPRAY could detect 5 explosive compounds, TNT, RDX, HMX, Tetryl, and TNB, out of 14 US EPA designated explosives. The minimum detection limit of the nitramine explosives was 14 ng/$^2$ for HMX and RDX. EXPRAY was more sensitive to nitroaromatics than the nitramines and the minimum detection limits per unit area (mm$^2$) for Tetryl, TNB, and TNT, were 3 ng, 3 ng, and 0.3 ng, respectively. The semi-quantification of 5 explosive compounds in an order ofmagnitude could be achieved by the intensity of developed color only when EXPRAY was applied on the standard solutions under controlled laboratory conditions. With contaminated soil samples, however, only the presence and type of explosive compounds was identified. Therefore, EXPRAY is an economic and sensitive method that can be used in a screening step for the identification of explosives in the field samples.

환경 시료 (토양 및 수질)내 화약물질을 신속하고 간편하게 검출할 수 있다면, 현장조사에서 오염도 조사를 위한 스키리닝 단계로 이용하여 불필요한 시료의 갯수와 고가의 실험실 정량분석비용을 줄일 수 있다. 상용 EXPRAY$^{(R)}$ Explosives Field Detection Kit(EXPRAY)를 이용하여 14종의 화약물질을 대상으로 화약물질 표준용액에 대한 최저검출농도를 결정 하고 및 준정량화 가능성을 확인하기 위한 실험을 실시하였다. 실험결과 EXPRAY는 14종의 화약물질 중에서, TNT, RDX, HMX, Tetryl및 TNB등 5종의 화약물질을 검출할 수 있었다. Nitramine계열인 HMX와 RDX에 대한 최저검출농도는 모두 14ng/mm$^2$이었다 EXPRAY는 nitroaromatic계열에는 더욱 민감하게 반응하여, Tetryl, TNB및 TNT에 대한 단위면적당(mm$^2$)최저 검출량이 각각 3ng, 3ng및 0.3ng이었다. 실험이 통제되는 조건에서 화약물질 표준용액에 EXPRAY를 적용하였을 경우에는 발색 강도의 비교를 통해 10배 단위의 준정량화가 가능하였다. 그러나 오염토양으로 실험한 경우에는 화약물질의 존재여부 및 종류만을 확인할 수 있었다. EXPRAY Explosives Detection Kit$^{(R)}$가 화약물질을 검출할 수 있는 경제적이고 민감한 방법이지만, 현장시료의 스크리닝 단계에만 적용할 수 있는 방법이다.

Keywords

References

  1. 이석진, 김미경, 홍태기, 2003, 고성능 액체 크로마토그래피에 의한 폭발성 화학물질의 정량, 한국환경분석학회지, 2, 113-123
  2. 한국수자원공사, 2002, 다락대 사격장내 토양오염 정밀조사를 통한 한탄강댐 수질예측 및 복원공법 연구, 최종보고서
  3. 한국수자원공사, 2005, 군남홍수조절지 건설사업 사격장 파탄지 토양오염 정밀조사 보고서, 최종보고서
  4. Bjella, K.L., 2005, Pre-Screening for Explosives Residues in Soil Prior to HPLC Analysis Utilizing EXPRAY, US Army Corps of Engineers, ERDC/CRREL TN-05-2
  5. Crockett, A.B., Craig, H.D., Jenkins, T.F., and Sisk, W.E., 1996, Field Sampling and Selecting on-site Analytical Methods for Explosives, US EPA, EPA/540/R-97/501
  6. Eriksson. J., Frankki, S., Shchukarev, A., and Skyllberg, U., 2004, Binding of 2,4,6-Trinitrotoluene, aniline, and nitrobenzene to dissolved and particulate soil organic matter, Environ. Sci. Technol., 38,3074-3080 https://doi.org/10.1021/es035015m
  7. Flokstra, B.R., Aken, B.V., and Schnoor, J.L., 2008, $Micro^{\circledR}$ toxtoxicity test: Detoxification of TNT and RDX contaminated solutions by poplar tissue cultures, Chemosphere, 71, 1970-1976 https://doi.org/10.1016/j.chemosphere.2007.12.020
  8. Hewiit, A.D., Jenkins, T.F., Walsh, M.E., Walsh, M.R., and Taylor, S., 2005, RDX and TNT residues from live-fire and blowin-place detonations, Chemosphere, 61, 888-894 https://doi.org/10.1016/j.chemosphere.2005.04.058
  9. Hilmi, A., Long, J.H.T., and Nguyen, A.L., 1999, Determination of explosives in soil and ground water by liquid chromatography-amperometric detection, Journal of Chromatography A, 844,97-110 https://doi.org/10.1016/S0021-9673(99)00392-1
  10. Jenkins, T.F., Pennington, J.C., Ranney, T.A., Berry, T.E., Miyares, P.H., Walsh, M.E., Hewitt, A.D., Perron, N.M., Parker, L.V., Hayes, C.A., and Wahlgren, E.G., 2001, Characterization of Explosives Contamination at Military Firing Range, Tech Rep. ERDC TR-01-5, USACE Engineering Research and Development Center, Vicksburg, MS
  11. Mistral group, http://www.mistralgroup.com/SEC_explosives.asp
  12. Robidoux, P.Y., Gong, P., Sarrazin, M., Bardai, G, Paquet, L., Hawari, J, Dubois, C., and Sunahara, G.I., 2004, Toxicity assessment of contaminated soils from an antitank firing range, Ecotoxicology and Environmental Safety, 58, 300-313 https://doi.org/10.1016/j.ecoenv.2003.11.004
  13. Spain, J.C., Hughes, J.B., and Knackmuss, H.-J, 2000, Biotransformation of Nitroaromatic Compounds and Explosives, Lewis Publishers
  14. Thiboutot, S., Ampleman, G, and Hewitt, G, 2002, Guide for Characterization of Sites Contaminated with Energetic Materials, US Army Corps of Engineers, ERDC/CRREL TR-02-1
  15. U.S. EPA, 1988a, Health Advisory for Hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX), Criteria and Standard Division, Office of Drinking Water, Washington, D.C.
  16. U.S. EPA, 1988b, Health Advisory for 2,4,6-trinitrotoluene (TNT), Criteria and Standard Division, Office of Drinking Water, Washington, D.C.
  17. U.S. EPA, 2006, SW 846 method 8330b, Nitroaromatics, nitramines and nitrate esters by high performance liquid chromatography(HPLC)