• Title/Summary/Keyword: nitride buffer layer

Search Result 34, Processing Time 0.025 seconds

The 1/f Noise Analysis of 3D SONOS Multi Layer Flash Memory Devices Fabricated on Nitride or Oxide Layer (산화막과 질화막 위에 제작된 3D SONOS 다층 구조 플래시 메모리소자의 1/f 잡음 특성 분석)

  • Lee, Sang-Youl;Oh, Jae-Sub;Yang, Seung-Dong;Jeong, Kwang-Seok;Yun, Ho-Jin;Kim, Yu-Mi;Lee, Hi-Deok;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.85-90
    • /
    • 2012
  • In this paper, we compared and analyzed 3D silicon-oxide-nitride-oxide-silicon (SONOS) multi layer flash memory devices fabricated on nitride or oxide layer, respectively. The device fabricated on nitride layer has inferior electrical properties than that fabricated on oxide layer. However, the device on nitride layer has faster program / erase speed (P/E speed) than that on the oxide layer, although having inferior electrical performance. Afterwards, to find out the reason why the device on nitride has faster P/E speed, 1/f noise analysis of both devices is investigated. From gate bias dependance, both devices follow the mobility fluctuation model which results from the lattice scattering and defects in the channel layer. In addition, the device on nitride with better memory characteristics has higher normalized drain current noise power spectral density ($S_{ID}/I^2_D$>), which means that it has more traps and defects in the channel layer. The apparent hooge's noise parameter (${\alpha}_{app}$) to represent the grain boundary trap density and the height of grain boundary potential barrier is considered. The device on nitride has higher ${\alpha}_{app}$ values, which can be explained due to more grain boundary traps. Therefore, the reason why the devices on nitride and oxide have a different P/E speed can be explained due to the trapping/de-trapping of free carriers into more grain boundary trap sites in channel layer.

SAW characteristics of AlN films sputtered on SiC buffer layer for harsh environment applications (SiC 버퍼충위 스퍼터링법으로 증착된 극한 환경용 AlN박막의 SAW 특성)

  • Hoang, Si-Hong;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.273-273
    • /
    • 2008
  • This paper describes the frequency response of two-port surface acoustic wave (SAW) resonator made of 002-polycrystalline aluminum nitride (AlN) thin film on 111-poly 3C-SiC buffer layer. In there, Polycrystalline AlN thin films were deposited on polycrystalline 3C-SiC buffer layer by pulsed reactive magnetron sputtering system, the polycrystalline 3C-SiC was grown on $SiO_2$/Si sample by CVD. The obtained results such as the temperature coefficient of frequency (TCF) of the device is about from 15.9 to 18.5 ppm/$^{\circ}C$, the change in resonance frequency is approximately linear (30-$150^{\circ}C$), which resonance frequency of AlN/3C-SiC structure has high temperature stability. The characteristics of AlN thin films grown on 3C-SiC buffer layer are also evaluated by using the XRD, and AFM images.

  • PDF

Effects of Microstructural Change in Joint Interface on Mechanical Properties of Si3N4/S.S316 joint with Ni Buffer layer (Ni buffer layer를 사용한 Si3N4/S.S316 접합체에서 접합계면의 미세구조 변화가 접합체의 기계적 특성에 미치는 영향)

  • 장희석;박상환;권혁보;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.381-387
    • /
    • 2000
  • Si3N4/stainless steel 316 joints with Ni buffer layer were fabricated by direct active brazing method (DIB) using Ag-Cu-Ti brazing alloy only and double brazing method (DOB) using Ag-Cu brazing alloy with Si3N4 pretreated with Ag-Cu-Ti brazing alloy. For the joint brazed by DIB method, Ti was segregated at the Si3N4/brazing alloy interface, but was not enough to form a stable joint interface. In addition, large amounts of Ni-Ti inter-metallic compounds were formed in tehbrazing alloy near the joint interface, which could deplete the contents of Ti involved in the interfacial reaction. However, for the joint brazed by DOB method, segregation of Ti at the joint interface were enough to enhance the formation of stable interfacial reaction products such as TiN and Ti-Si-Ni-N-(Cu) multicompounds, which restricted the formation of Ni-Tio inter-metallic compounds in the brazing alloy during brazing with Ni buffer layer. Fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was much improved by using DOB method rather than DIB method. It could be deduced that the differences of fracture strength of the joint with Ni buffer layer depending on brazing process adapted were directly affected by the formation of stable joint interface and the change in microstructure of the brazing alloy near the joint interface. It was found that fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was gradually reduced as the thickness of interface. It was found that fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was gradually reduced as the thickness of Ni buffer layer in the joint was increased from 0.1 mm to 10 mm. It seems to due to the increased residual stress in the joint as the thickness of Ni buffer layer is increased. The maximum fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was 386 MPa, and the fracture of joint was originated at Si3N4/brazing alloy joint interface and propagated into Si3N4 matrix.

  • PDF

Investigation of the Polarity in GaN Grown by HVPE (HVPE법으로 성장시킨 GaN의 극성 분석)

  • 정회구;정수진
    • Korean Journal of Crystallography
    • /
    • v.14 no.2
    • /
    • pp.93-104
    • /
    • 2003
  • The crystals of group-Ⅲ nitride semiconductors with wurtzite structure exhibit a strong polarity. Especially, GaN has characteristics of different growth rate, anisotropic electrical and optical properties due to the polarity. In this work, GaN epilayer was grown and the polarities of the crystals were observed by the chemical wet etching and SP-EFM. GaN thin films were deposited on c-plane A1₂O₃ substrate under the variations of growth conditions by HVPE such as the deposition temperature of the buffer layer, the deposition time, the ratio of Group-V and Ⅲ and the deposition temperature of the film. The adquate results were obtained under the conditions of 500℃, 90 seconds, 1333 and 1080℃, respectively. It is observed that the GaN layer grown without the buffer layer has N-polarity and the GaN layer grown on the buffer layer has Ga-polarity. Fine crystal single particles were grown on c-plane A1₂O₃ and SiO₂, layer. The external shape of the crystal shows {10-11}{10-10}(000-1) planes as expected in the PBC theory and anisotropic behavior along c-axis is obvious. As a result of etching on each plane, (000-1) and {10-11}planes were etched strongly due to the N-polarity and {10-10} plane was not affected due to the non-polarity. In the case of the crystal grown on c-plane A1₂O₃, two types of crystals were grown. They were hexagonal pyramidal-shape with {10-11}plane and hexagonal prism with basal plane. The latter might be grown by twin plane reentrant edge (TPRE) growth.

Single-phase Gallium Nitride on Sapphire with buffering AlN layer by Laser-induced CVD

  • Hwang Jin-Soo;Lee Sun-Sook;Chong Paul-Joe
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.1
    • /
    • pp.28-33
    • /
    • 1994
  • The laser-assisted chemical vapor deposition (LCVD) is described, by which the growth of single-phase GaN epitaxy is achieved at lower temperatures. Trimethylgallium (TMG) and ammonia are used as source gases to deposit the epitaxial films of GaN under the irradiation of ArF excimer laser (193 nm). The as-grown deposits are obtained on c-face sapphire surface near 700$^{\circ}$C, which is substantially reduced, relative to the temperatures in conventional thermolytic processes. To overcome the lattice mismatch between c-face sapphire and GaN ad-layer, aluminum nitride(AlN) is predeposited as buffer layer prior to the deposition of GaN. The gas phase interaction is monitored by means of quadrupole mass analyzer (QMA). The stoichiometric deposition is ascertained by X-ray photoelectron spectroscopy (XPS). The GaN deposits thus obtained are characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and van der Pauw method.

The Development of Hot Carrier Immunity Device in NMOSFET's (NMOSFET에서 핫-캐리어 내성의 소자 개발)

  • ;;;;Fadul Ahmed Mohammed
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.365-368
    • /
    • 2002
  • WSW(Wrap Side Wall) is proposed to decrease junction electric field in this paper. WSW process is fabricated after first gate etch, followed NMI ion implantation and deposition & etch nitride layer New WSW structure has buffer layer to decrease electric field. Also we compared the hot carrier characteristics of WSW and conventional. Also, we design a test pattern including pulse generator, level shifter and frequency divider, so that we can evaluate AC hot carrier degradation on-chip.

  • PDF

Effects of Brazing Processing Condition on Mechanical Properties and Reliability of Si3N/S.S. 316 Joints (브레이징 접합공정 조건이 SiN4/S.S. 316 접합체의 기계적 특성 및 신뢰도에 미치는 영향)

  • Chang, Hwi-Souck;Park, Sang-Whan;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.955-962
    • /
    • 2002
  • The microstructure change of brazed $Si_3N_4$/Stainless steel 316 joint with Cu buffer layer were examined to clarify the effects of brazing process conditions such as brazing time and temperature on the mechanical properties and reliability of brazed joints. For the brazed joint above 900${\circ}C$, the Cu buffer layer was completely dissolved into brazing alloy and the thickness of reaction product formed at $Si_3N_4$/brazing alloy joint interface was abruptly increased, which could increase the amounts of residual stress developed in the joint. The fracture strength of brazed $Si_3N_4$/Stainless steel 316 joint with Cu buffer layer at 950${\circ}C$ was much reduced comparing to those of joints brazed at the lower temperature. But, it was found that the effects of brazing time was not critical on the mechanical properties as well as the reliability of $Si_3N_4$/Stainless steel 316 joint with Cu buffer layer brazed at the temperature below 900${\circ}C$.

Fabrication and Properties of Metal/Ferroelectrics/Insulator/Semiconductor Structures with ONO buffer layer (ONO 버퍼층을 이용한 Metal/Ferroelectrics/Insulator/Semiconductor 구조의 제작 및 특성)

  • 이남열;윤성민;유인규;류상욱;조성목;신웅철;최규정;유병곤;구진근
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.305-309
    • /
    • 2002
  • We have successfully fabricated a Metal-Ferroelectric-Insulator-Semiconductor (MFIS) structure using Bi$\sub$4-x/La$\sub$x/Ti$_3$O$\sub$12/ (BLT) ferroelectric thin film and SiO$_2$/Nitride/SiO$_2$ (ONO) stacked buffer layers for single transistor type ferroelectric nonvolatile memory applications. BLT films were deposited on 15 nm-thick ONO buffer layer by sol-gel spin-coating. The dielectric constant and the leakage current density of prepared ONO film were measured to be 5.6 and 1.0 x 10$\^$-8/ A/$\textrm{cm}^2$ at 2MV/cm, respectively, It was interesting to note that the crystallographic orientations of BLT thin films were strongly effected by pre-bake temperatures. X-ray diffraction patterns showed that (117) crystallites were mainly detected in the BLT film if pre-baked below 400$^{\circ}C$. Whereas, for the films pre-baked above 500$^{\circ}C$, the crystallites with preferred c-axis orientation were mainly detected. From the C-V measurement of the MFIS capacitor with c-axis oriented BLT films, the memory window of 0.6 V was obtained at a voltage sweep of ${\pm}$8 V, which evidently reflects the ferroelectric memory effect of a BLT/ONO/Si structure.

  • PDF

A TEM Study on Growth Characteristics of GaN on Si(111) Substrate using MOCVD (Si(111) 기판 위에 MOCVD 법으로 성장시킨 GaN의 성장 특성에 관한 TEM 분석)

  • 신희연;정성훈;유지범;서수정;양철웅
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.135-140
    • /
    • 2003
  • The difference in lattice parameter and thermal expansion coefficient between GaN and Si which results in many defects into the grown GaN is larger than that between GaN and sapphire. In order to obtain high quality GaN films on Si substrate, it is essential to understand growth characteristics of GaN. In this study, GaN layers were grown on Si(111) substrates by MOCVD at three different GaN growth temperatures ($900^{\circ}C$, $1,000^{\circ}C$ and $1,100^{\circ}C$), using AlN and LT-GaN buffer layers. Using TEM, we carried out the comparative investigation of growth characteristics of GaN by characterizing lattice coherency, crystallinity, orientation relationship and defects formed (transition region, stacking fault, dislocation, etc). The localized region with high defect density was formed due to the lattice mismatch between AlN buffer layer and GaN. As the growth temperature of GaN increases, the defect density and surface roughness of GaN are decreased. In the case of GaN grown at $1,100^{\circ}$, growth thickness is decreased, and columns with out-plane misorientation are formed.

Optically Pumped Stimulated Emission from Column-III Nitride Semiconductors. (III족 질화물반도체의 광여기 유도방출)

  • 김선태;문동찬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.50-53
    • /
    • 1994
  • In this study. we report the properties of optically pumped stimulated emission at room temperature (RT) from column-III nitride semiconductors of GaN, GaInN, AlGaN/GaN double hetero-structure (DH) and AlGaN/GaInN DH which grown by low pressure metal-organic vapor phase epitaxy on sapphire substrate using an AIN buffer-layer. The peak wavelength of the stimulated emission at RT from AlGaN/GaN DH is 370nm and the threshold of excitation pumping power density (P$\_$th/) is about 89㎾/$\textrm{cm}^2$, and they from AlGaN/GaInN DH are 403nm and 130㎾/$\textrm{cm}^2$, respectively. The P$\_$th/ of AlGaN/GaN and AlGaN/GaInN DHs are lower than the bulk materials due to optical confinement within the active layers of GaN and GaInN. The optical gain and the polarization of stimulated emission characteristics are presented in this article.