• Title/Summary/Keyword: nilpotency index

Search Result 12, Processing Time 0.028 seconds

NILPOTENCY INDEX OF NIL-ALGEBRA OF NIL-INDEX 3

  • LEE WOO
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.569-573
    • /
    • 2006
  • Nagata and Higman proved that any nil-algebra of finite nilindex is nilpotent of finite index. The Nagata-Higman Theorem can be formulated in terms of T-ideals. TheT-ideal generated by $a^n$ for all $a{\in}A$ is also generated by the symmetric polynomials. The symmetric polynomials play an importmant role in analyzing nil-algebra. We construct the incidence matrix with the symmetric polynomials. Using this incidence matrix, we determine the nilpotency index of nil-algebra of nil-index 3.

NIL-CLEAN RINGS OF NILPOTENCY INDEX AT MOST TWO WITH APPLICATION TO INVOLUTION-CLEAN RINGS

  • Li, Yu;Quan, Xiaoshan;Xia, Guoli
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.751-757
    • /
    • 2018
  • A ring is nil-clean if every element is a sum of a nilpotent and an idempotent, and a ring is involution-clean if every element is a sum of an involution and an idempotent. In this paper, a description of nil-clean rings of nilpotency index at most 2 is obtained, and is applied to improve a known result on involution-clean rings.

DETERMINANT OF INCIDENCE MATRIX OF NIL-ALGEBRA

  • Lee, Woo
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.4
    • /
    • pp.577-581
    • /
    • 2002
  • The incidence matrices corresponding to a nil-algebra of finite index % can be used to determine the nilpotency. We find the smallest positive integer n such that the sum of the incidence matrices Σ$\_$p/$\^$p/ is invertible. In this paper, we give a different proof of the case that the nil-algebra of index 2 has nilpotency less than or equal to 4.

SOME PROPERTIES OF EVOLUTION ALGEBRAS

  • Camacho, L.M.;Gomez, J.R.;Omirov, B.A.;Turdibaev, R.M.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1481-1494
    • /
    • 2013
  • The paper is devoted to the study of finite dimensional complex evolution algebras. The class of evolution algebras isomorphic to evolution algebras with Jordan form matrices is described. For finite dimensional complex evolution algebras the criterium of nilpotency is established in terms of the properties of corresponding matrices. Moreover, it is proved that for nilpotent $n$-dimensional complex evolution algebras the possible maximal nilpotency index is $1+2^{n-1}$.

ON NCI RINGS

  • Hwang, Seo-Un;Jeon, Young-Cheol;Park, Kwang-Sug
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.215-223
    • /
    • 2007
  • We in this note introduce the concept of NCI rings which is a generalization of NI rings. We study the basic structure of NCI rings, concentrating rings of bounded index of nilpotency and von Neumann regular rings. We also construct suitable examples to the situations raised naturally in the process.

ON NAGATA-HIGMAN THEOREM

  • Lee, Woo
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1489-1492
    • /
    • 2009
  • Nagata[3] and Higman[1] showed that nil-algebra of the nilindex n is nilpotent of finite index. In this paper we show that the bounded degree of the nilpotency is less than or equal to $2^n-1$. Our proof needs only some elementary fact about Vandermonde determinant, which is much simpler than Nagata's or Higman's proof.

  • PDF

GROUPS HAVING MANY 2-GENERATED SUBGROUPS IN A GIVEN CLASS

  • Gherbi, Fares;Trabelsi, Nadir
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.365-371
    • /
    • 2019
  • If 𝖃 is a class of groups, denote by F𝖃 the class of groups G such that for every $x{\in}G$, there exists a normal subgroup of finite index H(x) such that ${\langle}x,h{\rangle}{\in}$ 𝖃 for every $h{\in}H(x)$. In this paper, we consider the class F𝖃, when 𝖃 is the class of nilpotent-by-finite, finite-by-nilpotent and periodic-by-nilpotent groups. We will prove that for the above classes 𝖃 we have that a finitely generated hyper-(Abelian-by-finite) group in F𝖃 belongs to 𝖃. As a consequence of these results, we prove that when the nilpotency class of the subgroups (or quotients) of the subgroups ${\langle}x,h{\rangle}$ are bounded by a given positive integer k, then the nilpotency class of the corresponding subgroup (or quotient) of G is bounded by a positive integer c depending only on k.

CENTER SYMMETRY OF INCIDENCE MATRICES

  • Lee, Woo
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.1
    • /
    • pp.29-36
    • /
    • 2000
  • The T-ideal of F(X) generated by $x^{n}$ for all x $\in$ X, is generated also by the symmetric polynomials. For each symmetric poly-nomial, there corresponds one row of the incidence matrix. Finding the nilpotency of nil-algebra of nil-index n is equivalent to determining the smallest integer N such that the (n, N)-incidence matrix has rank equal to N!. In this work, we show that the (n, (equation omitted)$^{(1,....,n)}$-incidence matrix is center-symmetric.

  • PDF

THE NILPOTENCY OF THE PRIME RADICAL OF A GOLDIE MODULE

  • John A., Beachy;Mauricio, Medina-Barcenas
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.185-201
    • /
    • 2023
  • With the notion of prime submodule defined by F. Raggi et al. we prove that the intersection of all prime submodules of a Goldie module M is a nilpotent submodule provided that M is retractable and M(Λ)-projective for every index set Λ. This extends the well known fact that in a left Goldie ring the prime radical is nilpotent.