MAXIMAL COMMUTATIVE SUBALGEBRAS OF MATRIX ALGEBRA WITH i(m) = 3

Youngkwon Song

ABSTRACT. Let (R, m, k) be a maximal commutative k-subalgebra of $M_n(k)$ where the index of nilpotency i(m) of m is 3. If the socle of R is of special case, then we can construct some isomorphic maximal commutative subalgebras.

1. Introduction

Throughout this paper, (R, m, k) is a maximal commutative subalgebra of $M_n(k)$ where the index of nilpotency i(m) of m is 3. The socle of the algebra R is denoted by soc(R). It is known that $V = k^n$ is a faithful R-module. If we consider two subspaces $V_1 = (0) :_V m$ and $V_2 = (0) :_V m^2$ of V, then any element r of m can be assumed of the following form:

$$\left(\begin{array}{ccc} O_p & O & O \\ A & O_q & O \\ C & B & O_t \end{array}\right)$$

where $dim_k(V_1) = t$, $dim_k(V_2) = q + t$, and p + q + t = n.

In the Courter's algebra [1], p = t = 2, q = 10.

In this paper, we assume the socle of R consists of the following matrices:

$$\begin{pmatrix} O_p & O & O \\ O & O_q & O \\ C & O & O_t \end{pmatrix}.$$

Received November 19, 2001.

²⁰⁰⁰ Mathematics Subject Classification: 15A27, 15A33.

Key words and phrases: socle, maximal commutative subalgebra.

The present research has been conducted by the Research Grant of Kwangwoon University in 2000.

DEFINITION 1.1. Let $A \in M_{q \times p}(k)$. Then KER(A) and NS(A) are defined as follows:

 $KER(A) = \{u \in M_{1\times q}(k)|uA = 0\}, \quad NS(A) = \{v \in M_{p\times 1}(k)|Av = 0\}.$ Then, it is well known that the next theorem holds.

THEOREM 1.2. Let (R, m, k) be a maximal commutative k-subalgebra of $M_n(k)$ with index of nilpotency i(m) of m is 3. If $\dim_k(m/\operatorname{soc}(R)) = \nu$ and the socle of the algebra R consists of the matrices in (*), then $\bigcap_{i=1}^{\nu} KER(A_i) = (0)$ and $\bigcap_{i=1}^{\nu} NS(B_i) = (0)$, where $R = k[r_1, r_2, ..., r_{\nu}] \oplus \operatorname{soc}(R)$ and for $i = 1, 2, ..., \nu$,

$$r_i = \left(\begin{array}{ccc} O_p & O & O \\ A_i & O_q & O \\ 0 & B_i & O_t \end{array} \right).$$

PROOF. Let $Z = (z_1, z_2, ..., z_q) \in \bigcap_{i=1}^{\nu} KER(A_i)$ and let

$$B = \left(\begin{array}{c} Z \\ O_{(t-1)\times q} \end{array}\right).$$

Then, the following matrix A

$$A = \left(\begin{array}{ccc} O_p & O & O \\ O & O_q & O \\ O & B & O_t \end{array}\right)$$

should belong to soc(R). But, the assumption for soc(R) implies that $Z = (0, 0, \dots, 0)$ and so $\bigcap_{i=1}^{\nu} KER(A_i) = (0)$. Similarly, we can have $\bigcap_{i=1}^{\nu} NS(B_i) = (0)$.

2. Main results

Let (R, m, k) be a maximal commutative k-subalgebra of $M_n(k)$ with index of nilpotency i(m) of m is 3. Assume $\dim_k(m/soc(R)) = \nu$, then any element in m which is not in soc(R) is spanned by the following form of matrices:

$$\lambda_i = \left(\begin{array}{ccc} O_p & O & O \\ A_i & O_q & O \\ O & B_i & O_t \end{array} \right)$$

for $i=1,2,\ldots,\nu$, where $A_i\in M_{q\times p}(k), B_i\in M_{t\times q}(k)$. Thus, the algebra R is $k[\lambda_1,\lambda_2,\ldots,\lambda_{\nu}]\oplus soc(R)$. For the brief notation, we will let $R\in\Gamma$ if $R=k[\lambda_1,\lambda_2,\ldots,\lambda_{\nu}]\oplus soc(R)$.

Let $X \in GL_q(k)$ and let for $i = 1, 2, \dots, \nu$,

$$\delta_i = \left(\begin{array}{ccc} O_p & O & O \\ X^{-1}A_i & O_q & O \\ O & B_iX & O_t \end{array} \right).$$

If we define an algebra S by $S = k[\delta_1, \delta_2, \dots, \delta_{\nu}] \oplus soc(R)$, then the following theorem implies S is a maximal commutative subalgebra of $M_n(k)$ which is isomorphic to the algebra R.

THEOREM 2.1 Let $R \in \Gamma$ be a maximal commutative subalgebra of $M_n(k)$ and let $S = k[\delta_1, \delta_2, \dots, \delta_{\nu}] \oplus soc(R)$ be an algebra defined as above. Then, S is a maximal commutative subalgebra of $M_n(k)$.

PROOF. Obviously, the algebra S is a commutative algebra. Now, let $L \in M_n(k)$ be a matrix in the centralizer of S. Then, LD = DL for all $D \in S$. Let L and D be defined as following block matrices:

$$L = \begin{pmatrix} L_1 & L_2 & L_3 \\ L_4 & L_5 & L_6 \\ L_7 & L_8 & L_9 \end{pmatrix}, \quad D = \begin{pmatrix} O_p & O & O \\ X^{-1}A_i & O_q & O \\ C & B_iX & O_t \end{pmatrix},$$

where $L_1 \in M_p(k), L_5 \in M_q(k), L_9 \in M_t$.

Then, from the relation, LD = DL, the following equations hold:

- (1) $L_2 X^{-1} A_i + L_3 C = O_p$
- $(2) L_3 B_i X = O_{p \times q}$
- (3) $L_5 X^{-1} A_i + L_6 C = X^{-1} A_i L_1$
- $(4) L_6 B_i X = X^{-1} A_i L_2$
- (5) $X^{-1}A_iL_3 = O_{q \times t}$
- (6) $L_8 X^{-1} A_i + L_9 C = C L_1 + B_i X L_4$
- (7) $L_9B_iX = CL_2 + B_iXL_5$
- $(8) CL_3 + B_i XL_6 = O_t$

From the equation (1), by letting $C = O_{t \times p}$, we have $L_2 X^{-1} A_i = O_p$ for all i. Thus,

$$L_2X^{-1} \in \cap_{i=1}^{\nu} KER(A_i).$$

Since $\bigcap_{i=1}^{\nu} KER(A_i) = (0)$, $L_2X^{-1} = O_{p\times q}$ and hence $L_2 = O_{p\times q}$. Again, from the equation (1), $L_3C = O_p$ and by letting $C = E_{ij}$, where E_{ij} is the (i,j)-th matrix unit in soc(R) for $1 \le i \le t, 1 \le j \le p$, we have $L_3 = O_{p\times t}$. Thus, $B_iXL_6 = O_t$ for all i in the equation (8) and so

$$XL_6 \in \bigcap_{i=1}^{\nu} NS(B_i).$$

Since $\bigcap_{i=1}^{\nu} NS(B_i) = (0)$, $XL_6 = O_{q \times t}$ and so $L_6 = O_{q \times t}$.

Now, by letting $C = E_{ij}$ for $1 \le i \le t, 1 \le j \le p$, we can have the following:

$$L_1 = aI_p$$
, $L_9 = aI_t$

for some $a \in k$.

Finally, in the equation (3),

$$L_5 X^{-1} A_i = X^{-1} A_i L_1 = X^{-1} A_i (aI_p) = aX^{-1} A_i.$$

This implies, for all i,

$$(L_5 X^{-1} - a X^{-1}) A_i = O_{q \times p}$$

and hence

$$L_5 X^{-1} - a X^{-1} \in \bigcap_{i=1}^{\nu} KER(A_i) = (0).$$

Thus,

$$L_5 = aI_q$$

Therefore, the matrix L is of the form

$$L = \left(\begin{array}{ccc} aI_p & O & O \\ L_4 & aI_q & O \\ L_7 & L_8 & aI_t \end{array} \right).$$

Note that, by letting $C = O_{t \times p}$ in the equation (6),

$$L_8 X^{-1} A_i = B_i X L_4$$

which implies

$$\left(\begin{array}{ccc} O_p & O & O \\ XL_4 & O_q & O \\ O & L_8X^{-1} & O_t \end{array}\right) \in R.$$

Thus,

$$\begin{pmatrix} O_p & O & O \\ L_4 & O_q & O \\ O & L_8 & O_t \end{pmatrix} = \begin{pmatrix} O_p & O & O \\ X^{-1}(XL_4) & O_q & O \\ O & (L_8X^{-1})X & O_t \end{pmatrix} \in S.$$

Now, we conclude that

$$L = \begin{pmatrix} aI_p & O & O \\ L_4 & aI_q & O \\ L_7 & L_8 & aI_t \end{pmatrix} \in S$$

and so the algebra S is a maximal commutative subalgebra of $M_n(k)$. \square

Furthermore, it can be proved that the two algebras R and S are isomorphic algebras.

THEOREM 2.2. The algebra S is isomorphic to R in Theorem 2.1.

PROOF. Define a map $\phi: R \longrightarrow S$ as follows:

$$\phi(\lambda_i) = \delta_i, i = 1, 2, \dots, \nu, \ \phi(I_n) = I_n, \ \phi(r) = r, r \in soc(R).$$

Then, we can easily show that the map ϕ is an isomorphism.

For a maximal commutative subalgebra $R \in \Gamma$ mentioned before, let

$$\gamma_i = \left(\begin{array}{ccc} O_p & O & O \\ A_i X & O_q & O \\ O & B_i & O_t \end{array} \right)$$

for $i=1,2,\ldots,\nu$, where $X\in GL_p(k)$. If we define an algebra T by $T=k[\gamma_1,\gamma_2,\ldots,\gamma_{\nu}]\oplus soc(R)$, then by a similar proof of Theorem 2.1, it is easily proved that T is a maximal commutative subalgebra of $M_n(k)$ which is isomorphic to the algebra R.

THEOREM 2.3. Let $R \in \Gamma$ be a maximal commutative subalgebra of $M_n(k)$ and let $T = k[\gamma_1, \gamma_2, \dots, \gamma_{\nu}] \oplus soc(R)$ be an algebra defined as above. Then, T is a maximal commutative subalgebra of $M_n(k)$.

THEOREM 2.4. Let $R \in \Gamma$ be a maximal commutative subalgebra of $M_n(k)$ and let $T = k[\gamma_1, \gamma_2, \dots, \gamma_{\nu}] \oplus soc(R)$ be an algebra defined as above. Then, T is isomorphic to R.

PROOF. Define a map $\sigma: R \longrightarrow T$ by

$$\sigma \left(\begin{array}{ccc} O_p & O & O \\ A_i & O_q & O \\ C & B_i & O_t \end{array} \right) = \left(\begin{array}{ccc} O_p & O & O \\ A_i X & O_q & O \\ C X & B_i & O_t \end{array} \right)$$

for $i = 1, 2, ..., \nu$ and $\sigma(I_n) = I_n$. Then, obviously σ is a homomorphism. Let

$$\begin{pmatrix} O_p & O & O \\ A_i & O_q & O \\ C & B_i & O_t \end{pmatrix} \in ker(\sigma).$$

Then,

$$A_i X = O_{q \times p}, CX = O_{t \times p}, B_i = O_{t \times q}$$

for all $i = 1, 2, ..., \nu$. Since X is invertible,

$$A_i = O_{q \times p}, C = O_{t \times p}, B_i = O_{t \times q}$$

which implies the algebra homomorphism σ is a monomorphism. Note that

$$\sigma \left(\begin{array}{ccc} O_p & O & O \\ A_i & O_q & O \\ CX^{-1} & B_i & O_t \end{array} \right) = \left(\begin{array}{ccc} O_p & O & O \\ A_iX & O_q & O \\ C & B_i & O_t \end{array} \right)$$

and so the algebra homomorphism σ is an isomorphism.

For a maximal commutative subalgebra $R \in \Gamma$ mentioned before, let

$$\eta_i = \left(\begin{array}{ccc} O_p & O & O \\ A_i & O_q & O \\ O & XB_i & O_t \end{array} \right)$$

for $i = 1, 2, ..., \nu$, where $X \in GL_t(k)$. If we define an algebra T by $T = k[\eta_1, \eta_2, ..., \eta_{\nu}] \oplus soc(R)$, then by a similar proof of Theorem 2.1, it is easily proved that T is isomorphic to the algebra R.

THEOREM 2.5. Let $R \in \Gamma$ be a maximal commutative subalgebra of $M_n(k)$ and let $T = k[\eta_1, \eta_2, \dots, \eta_{\nu}] \oplus soc(R)$ be an algebra defined as above. Then, T is a maximal commutative subalgebra of $M_n(k)$.

THEOREM 2.6. Let $R \in \Gamma$ be a maximal commutative subalgebra of $M_n(k)$ and let $T = k[\eta_1, \eta_2, \dots, \eta_{\nu}] \oplus soc(R)$ be an algebra defined as above. Then, T is isomorphic to R.

PROOF. Define a map $\psi: R \longrightarrow T$ by

$$\psi \left(\begin{array}{ccc} O_p & O & O \\ A_i & O_q & O \\ C & B_i & O_t \end{array} \right) = \left(\begin{array}{ccc} O_p & O & O \\ A_i & O_q & O \\ XC & XB_i & O_t \end{array} \right)$$

for $i=1,2,\ldots,\nu$ and $\psi(I_n)=I_n.$ Then, obviously ψ is a homomorphism. Let

$$\begin{pmatrix} O_p & O & O \\ A_i & O_q & O \\ C & B_i & O_t \end{pmatrix} \in ker(\psi).$$

Then,

$$A_i = O_{q \times p}, \ XC = O_{t \times p}, \ XB_i = O_{t \times q}$$

for all $i = 1, 2, ..., \nu$. Since X is invertible,

$$A_i = O_{q \times p}, \quad C = O_{t \times p}, \quad B_i = O_{t \times q}$$

which implies the algebra homomorphism ψ is a monomorphism. Note that

$$\psi \left(\begin{array}{ccc} O_p & O & O \\ A_i & O_q & O \\ X^{-1}C & B_i & O_t \end{array} \right) = \left(\begin{array}{ccc} O_p & O & O \\ A_i & O_q & O \\ C & XB_i & O_t \end{array} \right)$$

and so the algebra homomorphism ψ is an isomorphism.

With these results, we can simplify the matrices A_i and B_i in considering the form of the matrices in the maximal commutative subalgebra of matrix algebra of index of nilpotency 3.

References

- [1] W. C. Brown and F. W. Call, Maximal Commutative Subalgebras of $n \times n$ Matrices, Communications in Algebra 59 (1993), no. 12, 4439–4460.
- [2] W. C. Brown, Two Constructions of Maximal Commutative Subalgebras of $n \times n$ Matrices, Communications in Algebra 22 (1994), no. 10, 4051–4066.
- [3] ______, Constructing Maximal Commutative Subalgebras of Matrix Rings in Small Dimensions, Communications in Algebra 25 (1997), no. 12, 3923–3946.
- [4] R. C. Courter, The Dimension of Maximal Commutative Subalgebras of K_n , Duke Mathematical Journal 32 (1965), 225–232.
- [5] M. Gerstenhaber, On Dominance and Varieties of Commuting Matrices, Annals of Mathematics 73 (1961), no. 2, 324-348.
- [6] N. Jacobson, Schur's Theorem on Commutative Matrices, Bulletin of the American Mathematical Society 50 (1944), 431-436.
- [7] D. A. Suprunenko and R. I. Tyshkevich, Commutative Matrices, Academic Press, 1968.
- [8] Youngkwon Song, On the Maximal Commutative Subalgebras of 14 by 14 Matrices, Communications in Algebra 25 (1997), no. 12, 3823–3840.
- [9] ______, Maximal Commutative Subalgebras of Matrix Algebras, Communications in Algebra 27 (1999), no. 4, 1649–1663.
- [10] _____, Notes on the Constructions of Maximal Commutative Subalgebra of $M_n(k)$, Communications in Algebra 29 (2001), no. 10, 4333-4339.

Department of Mathematics Research Institute of Basic Science Kwangwoon University Seoul 139–701, Korea E-mail: yksong@daisy.kwangwoon.ac.kr