• Title/Summary/Keyword: nickel oxide

Search Result 356, Processing Time 0.03 seconds

First-principles investigations on helium behaviors in oxide-dispersion- strengthened nickel alloys with Hf additions

  • Yiren Wang;Fan Jia;Yong Jiang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.895-901
    • /
    • 2023
  • Oxide-dispersion- strengthened nickel alloys with Hf additions are expected to present high temperature mechanical properties and durable helium resistance based on first-principles density functional theory (DFT) calculations. Energetic and charge density evaluations of the helium behaviors were performed in Ni matrix, Y2Hf2O7 oxide and the oxide/matrix interface. With the presence of coherent Y2Hf2O7 in Ni matrix, chances of helium bubbles in Ni can be greatly diminished. The helium atoms shall occupy the interfacial site initially, then diffuse into in the octahedral sites of Y2Hf2O7, and these oxide-captured He atoms prefer to separate individually. Much higher diffusion barrier of He in Y2Hf2O7 than in nickel is related to the strong hybridization between interstitial He-1s and nearest-neighboring O-2p orbitals.

Improving the Long-term Field Emission Stability of Carbon Nanotubes by Coating Co and Ni Oxide Layers

  • Choe, Ju-Seong;Lee, Han-Seong;Lee, Nae-Seong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.18.1-18.1
    • /
    • 2011
  • Some applications of carbon nanotubes (CNTs) as field emitters, such as x-ray tubes and microwave amplifiers, require high current emission from a small emitter area. To emit the high current density, CNT emitters should be optimally fabricated in terms of material properties and morphological aspects including high crystallinity, aspect ratio, distribution density, height uniformity, adhesion on a substrate, low outgassing rate during electron emission in vacuum, etc. In particular, adhesion of emitters on the substrate is one of the most important parameters to be secured for high current field emission from CNTs. So, we attempted a novel approach to improve the adhesion of CNT emitters by incorporating metal oxide layers between CNT emitters. In our previous study, CNT emitters were fabricated on a metal mesh by filtrating the aqueous suspensions containing both highly crystalline thin multiwalled CNTs and thick entangled multiwalled CNTs. However, the adhesion of CNT film was not enough to produce a high emission current for an extended period of time even after adopting the metal mesh as a fixing substrate of the CNT film. While a high current was emitted, some part of the film was shown to delaminate. In order to strengthen the CNT networks, cobalt-nickel oxides were incorporated into the film. After coating the oxide layer, the CNT tips seemed to be more strongly adhered on the CNT bush. Without the oxide layer, the field emission voltage-current curve moved fast to a high voltage side as increasing the number of voltage sweeps. With the cobalt-nickel oxide incorporated, however, the curve does not move after the second voltage sweep. Such improvement of emission properties seemed to be attributed to stronger adhesion of the CNT film which was imparted by the cobalt-nickel oxide layer between CNT networks. Observed after field emission for an extended period of time, the CNT film with the oxide layer showed less damage on the surface caused by high current emission.

  • PDF

The Oxidation of Specpure Nickel (Specpure Nikel의 Oxidation)

  • Choi, Jae-Shi;Sin, Soo-Hee;Lee, Kyu-Yong
    • Journal of the Korean Chemical Society
    • /
    • v.10 no.4
    • /
    • pp.153-157
    • /
    • 1966
  • The measurement of Oxidation of nickel has been investigated using vacuum quartz microbalance in the temperature range of $500^{\circ}{\sim}800^{\circ}C$ at various oxygen pressure. The rate constants of nickel-oxidation were evaluated according to the parabolic rate law. From the Arrhenius equation, the activation energy in the range of experimental temperatures were found that $E_{act}$= 35.4 Kcal/mole. It was also found that the parabolic rate constants varied approximately as the one fifth power of the oxygen pressure for nickel-oxidation. The mechanism for the oxidation of this metal were seemed to be via cation vacancy produced by excess of oxygen dissolved in the oxide film.

  • PDF

Nickel Doping on Cobalt Oxide Thin Film Using by Sputtering Process-a Route for Surface Modification for p-type Metal Oxide Gas Sensors

  • Kang, Jun-gu;Park, Joon-Shik;An, Byeong-Seon;Yang, Cheol-Woong;Lee, Hoo-Jeong
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1867-1872
    • /
    • 2018
  • This study proposes a route for surface modification for p-type cobalt oxide-based gas sensors. We deposit a thin layer of Ni on the Co oxide film by sputtering process and annealed at $350^{\circ}C$ for 15 min in air, which changes a typical sputtered film surface into one interlaced with a high density of hemispherical nanoparticles. Our in-depth materials characterization using transmission electron microscopy discloses that the microstructure evolution is the result of an extensive inter-diffusion of Co and Ni, and that the nanoparticles are nickel oxide dissolving some Co. Sensor performance measurement unfolds that the surface modification results in a significant sensitivity enhancement, nearly 200% increase for toluene (at $250^{\circ}C$) and CO (at $200^{\circ}C$) gases in comparison with the undoped samples.

Characteristics of NiO films prepared by atomic layer deposition using bis(ethylcyclopentadienyl)-Ni and O2 plasma

  • Ji, Su-Hyeon;Jang, Woo-Sung;Son, Jeong-Wook;Kim, Do-Heyoung
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2474-2479
    • /
    • 2018
  • Plasma-enhanced atomic layer deposition (PEALD) is well-known for fabricating conformal and uniform films with a well-controlled thickness at the atomic level over any type of supporting substrate. We prepared nickel oxide (NiO) thin films via PEALD using bis(ethylcyclopentadienyl)-nickel ($Ni(EtCp)_2$) and $O_2$ plasma. To optimize the PEALD process, the effects of parameters such as the precursor pulsing time, purging time, $O_2$ plasma exposure time, and power were examined. The optimal PEALD process has a wide deposition-temperature range of $100-325^{\circ}C$ and a growth rate of $0.037{\pm}0.002nm$ per cycle. The NiO films deposited on a silicon substrate with a high aspect ratio exhibited excellent conformality and high linearity with respect to the number of PEALD cycles, without nucleation delay.

Fabrication and H2S Sensing Property of Nickel Oxide and Nickel Oxide-Carbon Nanotube Composite (산화니켈 및 탄소나노튜브/산화니켈 복합체 가스센서의 제작과 황화수소 감지 특성)

  • Yang, Haneul;Chinh, Ngyuen Duc;Hieu, Ngyuen Minh;Park, Jihwan;Hong, Soonhyun;yun, Hongkwan;Kim, Chunjoong;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.28 no.8
    • /
    • pp.466-473
    • /
    • 2018
  • Nickel oxide(NiO) thin films, nanorods, and carbon nanotube(CNT)/NiO core-shell nanorod structures are fabricated by sputtering Nickel at different deposition time on alumina substrates or single wall carbon nanotube templates followed by oxidation treatments at different temperatures, 400 and $700^{\circ}C$. Structural analyses are carried out by scanning electron microscopy and x-ray diffraction. NiO thinfilm, nanorod and CNT/NiO core-shell nanorod structurals of the gas sensor structures are tested for detection of $H_2S$ gas. The NiO structures exhibit the highest response at $200^{\circ}C$ and high selectivity to $H_2S$ among other gases of NO, $NH_3$, $H_2$, CO, etc. The nanorod structures have a higher sensing performance than the thin films and carbon nanotube/NiO core-shell structures. The gold catalyst deposited on NiO nanorods further improve the sensing performance, particularly the recovery kinetics.

Preparation of Nickel Oxide Films by Anodizing (양극산화를 이용한 산화니켈 박막 제조)

  • Kim, Youngjin;Jung, Jihoon
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.204-210
    • /
    • 2012
  • Nickel oxide thin films with 2.3 ${\mu}m$ thickness were prepared in order to overcome limitations of thickness with nm dimension by anodizing. For the electrolyte, ethylene glycol was used as solvent, and $NH_4F$ was added for source of $F^-$ ions. The anodizing experiments were carried out on various voltages such as 40, 60 V and 80 V for 12 hours. The thickness of NiO was changed according to the anodizing time and the voltage. However, destruction of Ni caused by rapid oxidation reaction occurred at 80 V. XRD results show that NiO was successfully created by anodizing.

Synthesis and Characterization of New Nickel Sulfide Precursor

  • Lee, Sang Chan;Park, Bo Keun;Chung, Taek-Mo;Hong, Chang Seop;Kim, Chang Gyoun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.365.2-365.2
    • /
    • 2014
  • Nickel sulfide (NiS) has been utilized in optoelectronic applications, such as transformation-toughening agent for materials used in semiconductor applications, catalysts, and cathodic materials in rechargeable lithium batteries. Recently, high quality nickel sulfide thin films have been explored using ALD/CVD technique. Suitable precursors are needed to deposit thin films of inorganic materials. However, nickel sulfide precursors available for ALD/CVD process are very limited to nickel complexes with dithiocarbamate and alkanethiolate ligands. Therefore, it is essential to prepare novel nickel sulfide suitable for ALD/CVD precesses. Herein we report on the synthesis and characterization of new nickel sulfide complex with designed aminothiolate ligand. Furthermore thin films of NiS have been prepared on silicon oxide substrates by spin coating nickel precursor 10 wt% in THF. The novel complex has been characterized by means of 1H-NMR, elemental analysis, thermogravimetric analysis (TGA), X-ray Diffraction (XRD) and scanning electron microscope (SEM).

  • PDF

Simple Preparation of One-dimensional Metal Selenide Nanomaterials Using Anodic Aluminum Oxide Template

  • Piao, Yuanzhe
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.35-43
    • /
    • 2012
  • Highly ordered and perforated anodic aluminum oxide membranes were prepared by anodic oxidation and subsequent removal of the barrier layer. By using these homemade anodic aluminum oxide membranes as templates, metal selenide nanowires and nanotubes were synthesized. The structure and composition of these one-dimensional nanomaterials were studied by field emission scanning electron microscopy as well as transmission electron microscopy and energy dispersive X-ray spectroscopy. The growth process of metal selenide inside anodic aluminum oxide channel was traced by investigating the series of samples using scanning electron microscopy after reacting for different times. Straight and dense copper selenide and silver selenide nanowires with a uniform diameter were successfully prepared. In case of nickel selenide, nanotubes were preferentially formed. Phase and crystallinity of the nanostructured materials were also investigated.

Effect of Ni/Fe Ion Concentration Ratio on Fuel Cladding Crud Deposition (핵연료 피복관 부식생성물 부착에 관한 Ni/Fe 이온 농도비의 영향)

  • Baek, S.H.;Kim, U.C.;Shim, H.S.;Lim, K.S.;Hur, D.H.
    • Corrosion Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.145-151
    • /
    • 2014
  • The objectives of this study are to investigate the effect of the concentration ratios of Ni and Fe ions on crud deposition onto the fuel cladding surface in the simulated primary environments of a pressurized water reactor. Crud deposition tests were conducted in the Ni and Fe concentration ratios of 20:20 ppm, 39:1 ppm and 1:39 ppm at $325^{\circ}C$ for 14 days. In the case of the same Ni and Fe ion ratio (20:20), nickel ferrite with a polyhedral shape was formed. Nickel oxide deposits with a needle shape were formed in the condition of high Ni to Fe ion ratio (39:1), While polyhedral iron oxide and needle-like nickel oxide formed in the condition of low Ni to Fe ion ratio (1:39). The amount of deposits increased, when Fe oxides were formed. This indicates that Fe rich oxides stimulated Ni oxide deposition.