DOI QR코드

DOI QR Code

First-principles investigations on helium behaviors in oxide-dispersion- strengthened nickel alloys with Hf additions

  • Yiren Wang (Key Laboratory for Nonferrous Materials (MOE), School of Materials Science and Engineering, Central South University) ;
  • Fan Jia (Key Laboratory for Nonferrous Materials (MOE), School of Materials Science and Engineering, Central South University) ;
  • Yong Jiang (Key Laboratory for Nonferrous Materials (MOE), School of Materials Science and Engineering, Central South University)
  • Received : 2022.07.05
  • Accepted : 2022.10.27
  • Published : 2023.03.25

Abstract

Oxide-dispersion- strengthened nickel alloys with Hf additions are expected to present high temperature mechanical properties and durable helium resistance based on first-principles density functional theory (DFT) calculations. Energetic and charge density evaluations of the helium behaviors were performed in Ni matrix, Y2Hf2O7 oxide and the oxide/matrix interface. With the presence of coherent Y2Hf2O7 in Ni matrix, chances of helium bubbles in Ni can be greatly diminished. The helium atoms shall occupy the interfacial site initially, then diffuse into in the octahedral sites of Y2Hf2O7, and these oxide-captured He atoms prefer to separate individually. Much higher diffusion barrier of He in Y2Hf2O7 than in nickel is related to the strong hybridization between interstitial He-1s and nearest-neighboring O-2p orbitals.

Keywords

Acknowledgement

The authors would like to thank the financial support from the National Natural Science Foundation of China (Grant No. 52001331). The computational resource at the High-Performance Computing Center of Central South University is also gratefully acknowledged.

References

  1. R.N. Wright, J. Wright, C. Cabet, 4.10 - material performance in helium-cooled systems, in: R.J.M. Konings, R.E. Stoller (Eds.), Comprehensive Nuclear Materials, second ed., Elsevier, Oxford, 2019, pp. 266-291.
  2. S. Tang, Z. Zheng, L.K. Ning, Gamma prime coarsening in a nickel base single crystal superalloy, Mater. Lett. 128 (2014) 388-391. https://doi.org/10.1016/j.matlet.2014.04.185
  3. F. Masoumi, M. Jahazi, D. Shahriari, J. Cormier, Coarsening and dissolution of γ' precipitates during solution treatment of AD730TM Ni-based superalloy: mechanisms and kinetics models, J. Alloys Compd. 658 (2016) 981-995. https://doi.org/10.1016/j.jallcom.2015.11.002
  4. R.A. MacKay, M.V. Nathal, g0 coarsening in high volume fraction nickel-base alloys, Acta Metall. Mater. 38 (6) (1990) 993-1005. https://doi.org/10.1016/0956-7151(90)90171-C
  5. X. Mao, Y.-B. Chun, C.-H. Han, J. Jang, Precipitation behavior of oxide dispersion strengthened Alloy 617, J. Mater. Sci. 52 (23) (2017) 13626-13635. https://doi.org/10.1007/s10853-017-1437-3
  6. 왕만Dispersoid, Precipitation and Creep Behavior of Nickel-Based Oxide Dispersion Strengthened Alloys, 서울대학교 대학원, 2018.
  7. C. Capdevila, M. Serrano, M. Campos, High strength oxide dispersion strengthened steels: fundamentals and applications, Mater. Sci. Technol. 30 (13) (2014) 1655-1657. https://doi.org/10.1179/0267083614Z.000000000787
  8. Q. Tang, T. Hoshino, S. Ukai, B. Leng, S. Hayashi, Y. Wang, Refinement of oxide particles by addition of Hf in Ni-0.5 mass% Al-1 mass% Y2O3 alloys, Mater. Trans. 51 (11) (2010) 2019-2024. https://doi.org/10.2320/matertrans.M2010163
  9. Q. Tang, S. Ukai, N. Oono, S. Hayashi, B. Leng, Y. Sugino, W. Han, T. Okuda, Oxide particle refinement in 4.5 mass% Al Ni-based ODS superalloys, Mater. Trans. 53 (4) (2012) 645-651. https://doi.org/10.2320/matertrans.M2011251
  10. X.T. Zu, L. Yang, F. Gao, S.M. Peng, H.L. Heinisch, X.G. Long, R.J. Kurtz, Properties of helium defects in bcc and fcc metals investigated with density functional theory, Phys. Rev. B 80 (5) (2009), 054104.
  11. N. Oono, Q. Tang, S. Ukai, Oxide particle refinement in Ni-based ODS alloy, Mater. Sci. Eng., A 649 (2016) 250-253. https://doi.org/10.1016/j.msea.2015.09.094
  12. G. Henkelman, B.P. Uberuaga, H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (22) (2000) 9901-9904. https://doi.org/10.1063/1.1329672
  13. M.W.J. Chase, JANAF Thermochemical Tables, third ed., 1985, p. 14.
  14. F. Birch, Finite elastic strain of cubic crystals, Phys. Rev. B 71 (11) (1947) 809-824. https://doi.org/10.1103/PhysRev.71.809
  15. W. Voigt, Lehrbuch der kristallphysik:(mit ausschluss der kristalloptik), BG Teubner, 1910.
  16. M. Born, R.D. Misra, On the stability of crystal lattices. IV, in: Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, 1940, pp. 466-478.
  17. M. Born, K. Huang, Dynamical Theory of Crystal Lattices, Clarendon press, 1954.
  18. S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, 367, in: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45, 1954, pp. 823-843. https://doi.org/10.1080/14786440808520496
  19. J.M. Pruneda, E. Artacho, First-principles study of structural, elastic, and bonding properties of pyrochlores, Phys. Rev. B 72 (8) (2005), 085107.
  20. G. Karthick, A. Karati, B.S. Murty, Low temperature synthesis of nanocrystal-line Y2Ti2O7, Y2Zr2O7, Y2Hf2O7 with exceptional hardness by reverse co-precipitation technique, J. Alloys Compd. 837 (2020), 155491.
  21. A. Gencer, A. Candan, A. Erkisi, Electronic nature, optical and mechanical properties of M2Pt2O7 (M = Sc, Y and La) pyrochlores: a DFT study, Phys. B Condens. Matter 607 (2021), 412862.
  22. J. Feng, B. Xiao, C.L. Wan, Z.X. Qu, Z.C. Huang, J.C. Chen, R. Zhou, W. Pan, Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7 (Ln=La, Pr, Nd, Sm, Eu and Gd) pyrochlore, Acta Mater. 59 (4) (2011) 1742-1760. https://doi.org/10.1016/j.actamat.2010.11.041
  23. B. Liu, J.Y. Wang, F.Z. Li, Y.C. Zhou, Theoretical elastic stiffness, structural stability and thermal conductivity of La2T2O7 (T=Ge, Ti, Sn, Zr, Hf) pyrochlore, Acta Mater. 58 (13) (2010) 4369-4377. https://doi.org/10.1016/j.actamat.2010.04.031
  24. I.-K. Suh, H. Ohta, Y. Waseda, High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction, J. Mater. Sci. 23 (2) (1988) 757-760. https://doi.org/10.1007/BF01174717
  25. P.L. Lane, P.J. Goodhew, Phil. Mag. 48 (1983) 965-986. https://doi.org/10.1080/01418618308244330
  26. M. de Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst, M. Sluiter, C. Krishna Ande, S. van der Zwaag, J.J. Plata, C. Toher, S. Curtarolo, G. Ceder, K.A. Persson, M. Asta, Charting the complete elastic properties of inorganic crystalline compounds, Sci. Data 2 (1) (2015), 150009.
  27. C. Kittel, P. McEuen, P. McEuen, Introduction to Solid State Physics, Wiley, New York, 1996.
  28. R. Farraro, R.B. McLellan, Temperature dependence of the Young's modulus and shear modulus of pure nickel, platinum, and molybdenum, Metall. Trans. A 8 (10) (1977) 1563-1565. https://doi.org/10.1007/BF02644859
  29. V. Philipps, K. Sonnenberg, Interstitial diffusion of He in nickel, J. Nucl. Mater. 114 (1) (1983) 95-97. https://doi.org/10.1016/0022-3115(83)90076-4
  30. X. Zhang, C.-L. Ren, H. Han, C.-B. Wang, H.-F. Huang, Y.-R. Yin, W. Zhang, G. Lumpkin, P. Huai, Z.-Y. Zhu, First-principles prediction of interstitial carbon, nitrogen, and oxygen effects on the helium behavior in nickel, J. Appl. Phys. 122 (6) (2017), 065901.
  31. D. Sun, P. Zhang, J. Ding, J. Zhao, Helium behavior in different oxides inside ODS steels: a comparative ab initio study, J. Nucl. Mater. 507 (2018) 101-111. https://doi.org/10.1016/j.jnucmat.2018.04.048
  32. J. Xia, W. Hu, J. Yang, B. Ao, X. Wang, A Study of the Behavior of Helium Atoms at Ni Grain Boundaries, vol. 243, 2006, pp. 2702-2710, 12. https://doi.org/10.1002/pssb.200642023
  33. H.F. Gong, Y. Yan, X.S. Zhang, W. Lv, T. Liu, Q.S. Ren, Effect of grain boundary structures on the behavior of He defects in Ni: an atomistic study, Chin. Phys. B 26 (9) (2017), 093104.
  34. K. Kunitomi, X. Yan, T. Nishihara, N. Sakaba, T.J.N.E. Mouri, Technology, JAEA's VHTR for hydrogen and electricity cogeneration, GTHTR300C 39 (1) (2007) 9-20. https://doi.org/10.5516/NET.2007.39.1.009